Integral Relations for a Control Volume
Control volume approach is accurate for any flow distribution but is often based on the “one-
dimensional” property values at the boundaries. It gives useful engineering estimates.

System and control volume
A system is defined as a fixed quantity of matter or a region in space chosen for study. The mass or
region outside the system is called the surroundings.
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Fig.1: System, surroundings, and boundary.
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System boundary: the real or imaginary surface that separates the system from its surroundings. The

boundaries of a system can be fixed or movable. Mathematically, the boundary has zero thickness, no
mass, and no volume.

Open system or control volume is a properly selected region in space. It usually encloses a device that

involves mass flow such as a compressor. Both mass and energy can cross the boundary of a control
volume.

Note: control volume is an abstract concept and does not hinder the flow in any way.
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Fig. 2: Examples of fixed, moving, and deformable control volume.



Volume and mass flow rate
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Fig.3: Volume flow rate through arbitrary surface.

Let n be defined as the unit vector normal to dA. Then the amount of fluid swept through dA in time dt
is:

dV =V dt dA cos = (V.n)dA dt

The integral of dV/dt is the total volume rate of flow Q through the surface S:

stf(v.n)dAszndA

N

where V, is the normal component of the velocity. We consider n to be the outward normal unit vector.
Volume can be multiplied by density to obtain the mass flow m.

m = f p(V.n)dA =fan dA
5 5

If density and velocity are constant over the surface S, a simple expression results:
m = pQ = pAV

The Reynolds Transport Theorem

To convert a system analysis to control volume analysis, we must convert our mathematics to apply to a
specific region rather than to individual masses. This conversion is called the Reynolds transport
theorem.

Consider a fixed control volume with an arbitrary flow pattern through. In general, each differential area
dA of surface will have a different velocity V with a different angle 6 with the normal to dA. One can
find:
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Fig. 4: Control volume, Reynolds transport theorem.

Let B be any property of the fluid (energy, momentum, enthalpy, etc.) and 8 = dB/dm be the intensive
value of the amount B per unit mass in any small element of the fluid.

The total amount of B in the control volume is: dB

BCV:fﬁdm:fﬂpdV B =—
A cv

dm

A change within the control volume: d
— dv
T f Bp

cv

Outflow of B from the control volume:
f BpV cos6 dA,,;
Ccs

Inflow of B to the control volume:
f BpV cosb dA;,
Cs

CV and CS refer to control volume and control surface, respectively.

For the system shown in Fig. 4, the instantaneous change of B in the system is sum of the change within,
plus the outflow, minus the inflow:
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d d
&(Bsys) =7 f BpdV |+ f BpV cosO dAy,: — f BpV cos@ dA;,
cv cs cs

Note the control volume is fixed in space, the elemental volume do not vary with time. Also we note
that V cosB is the component of V normal to the area element of the control surface. Thus we can write:

Flux term = f BV dA g — f BV dAy, = f B dritgus — f B diivyn
CS CS CS CS

The vector form of the above equation is:

Flux term = f ﬁp(v. 1) dA
cs

And the Reynolds transport theorem, in the vector form, becomes:

d d o
a(Bsys) ~dt f BpdV | + J— IBP(V' n) dA
cv cS

One-dimensional flux term approximation

In many situations, the flow crosses the boundaries of the control surface at simplified inlets and exits
that are approximately one-dimensional (the velocity can be considered uniform across each control
surface). For a fixed control volume, the surface integral reduces to:

d d . . .
a(Bsys) = % f BpdV | + Z ﬁimilout - Z ﬁimilin where m; = p;A;V;
cv outlets inlets
Example 1

A fixed control volume has three one-dimensional boundary sections, as shown in the figure below. The
flow within the control volume is steady. The flow properties at each section are tabulated below. Find
the rate of change of energy that occupies the control volume at this instant.

Control surface | type p, kg/m® V, m/s A, m? e, J/kg
1 inlet 800 5.0 2.0 300
2 inlet 800 8.0 3.0 100
3 outlet 800 17.0 2.0 150
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Conservation of mass
For conservation of mass, B=m and 8 = dm/dm = 1. The Reynolds transport equation becomes:

dp - dm
cv

)s stem
cs Y

If the control volume only has a number of one-dimensional inlets and outlets, we can write:

dp
f Edv + z(piAiVi)out - Z(piAiVi)in =0
cv i i

Note: for steady-state flow, dp/dt = 0, and the conservation of mass becomes:

Z(piAiVi)out = Z(piAiVi)in
7 7

This means, in steady flow, the mass flows entering and leaving the control volume must balance.

Average velocity
In cases that fluid velocity varies across a control surface, it is often convenient to define an average
velocity.

Q 1(-
Vav = 7 = Zf(v. 1)dA
The average velocity is only a concept, i.e., when it is multiplied by the area gives the volume flow.

If the density varies across the cross-section, we similarly can define an average density:

1
Pav ZprdA
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Example 2

In a grinding and polishing operation, water at 300 K is supplied at a flow rate of 4.264x10° kg/s through
a long, straight tube having an inside diameter of D=2R=6.35 mm. Assuming the flow within the tube is
laminar and exhibits a parabolic velocity profile:

u(r) = Upmax [1 - (%)2]

where U,q is the maximum fluid velocity at the center of the tube. Using the definition of the mass flow

u
rate and the concept of average velocity, show that:uavg = nzlax
— >
u(r) > > uavg : """""""" 1 R
I R T r_._ L
! 1
—> > [ 1
— > le— —
R

The linear momentum equation
For Newton’s second law, the property being differentiated is the linear momentum, mV. Thus B =mV
and 8 = dB/dm = V. The Reynolds transport theorem becomes:

oy =NE=2 [ vpav 7o(7.7) da
=57 =4( o)+ [0
cvV CS

Note that this is a vector equation and has three components.

Momentum flux term,

CcS

If cross-section is one-dimensional, V and p are uniform and over the area, momentum flux simplifies:
M; = Vi(p;AV;) = mV;
For one-dimensional inlets and outlets, we have:
= d - ] R
ZF = E Vp av |+ Z(miVi)out - Z(miVi)in
cv i i

Net pressure force on a closed CV
Recall that the external pressure force on a surface is normal and inward.
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Since the unit vector n is outward, we can write:

Fpress = ]p(_n)dA
CcS

If the pressure has a uniform value p, all around the surface, the net pressure force is zero.

Funiform press — ~—Pa f ndA =0
CcS

This is independent of the shape of the surface. Thus pressure force problems can be simplified by
subtracting any convenient uniform pressure p, and working only with the pieces of gage pressure that
remain:

Foress = J.(p —p)(—n)dA = J. pgage(_n)dA
cS cS

Note: The axial velocity is non-uniform, thus the simple momentum flux calculation fup(V. n)dA =
mV = pAV2 is not accurate. To consider the effects of non-uniform velocity, we introduce a correction
factor B.

24A = BV, = BpAV2 ~ () aa
plutda =priV, = ppavs  or  B=%f(3=

Values of B can be calculated using the duct velocity profile and the above definition:

T'Z
Laminar flow: u = U, (1 — F) with B =4/3
(2+m)?(14+4m)?

\™ ,
Turbulent flow: u = U, (1 - E) with § = 2(1+2m)(2+2m)
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