1.12 For low-speed (laminar) flow in a tube of radius ro, the velocity u takes the form

$$
\mathrm{u}=\mathrm{B} \frac{\Delta \mathrm{p}}{\mu}\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}^{2}\right)
$$

where μ is viscosity and $\Delta \mathrm{p}$ the pressure drop. What are the dimensions of B ?
Solution: Using Table 1-2, write this equation in dimensional form:

$$
\begin{aligned}
\{\mathrm{u}\}=\{\mathrm{B}\} \frac{\{\Delta \mathrm{p}\}}{\{\mu\}}\left\{\mathrm{r}^{2}\right\}, & \text { or: }\left\{\frac{\mathrm{L}}{\mathrm{~T}}\right\} \\
\{\mathrm{B} & =\{\mathrm{B}\} \frac{\left\{\mathrm{M} / \mathrm{LT}^{2}\right\}}{\{\mathrm{M} / \mathrm{LT}\}}\left\{\mathrm{L}^{2}\right\}=\{\mathrm{B} ?\}\left\{\frac{\mathrm{L}^{2}}{\mathrm{~T}}\right\}, \\
\text { or: } \quad\{\mathrm{B}\} & =\left\{\mathbf{L}^{-1}\right\} \text { Ans. }
\end{aligned}
$$

The parameter B must have dimensions of inverse length. In fact, B is not a constant, it hides one of the variables in pipe flow. The proper form of the pipe flow relation is

$$
\mathrm{u}=\mathrm{C} \frac{\Delta \mathrm{p}}{\mathrm{~L} \mu}\left(\mathrm{r}_{\mathrm{o}}^{2}-\mathrm{r}^{2}\right)
$$

where L is the length of the pipe and C is a dimensionless constant which has the theoretical laminar-flow value of (1/4)-see Sect. 6.4.
1.13 The efficiency η of a pump is defined as

$$
\eta=\frac{\mathrm{Q} \Delta \mathrm{p}}{\text { Input Power }}
$$

where Q is volume flow and $\Delta \mathrm{p}$ the pressure rise produced by the pump. What is η if $\Delta \mathrm{p}=35 \mathrm{psi}, \mathrm{Q}=40 \mathrm{~L} / \mathrm{s}$, and the input power is 16 horsepower?

Solution: The student should perhaps verify that $\mathrm{Q} \Delta \mathrm{p}$ has units of power, so that η is a dimensionless ratio. Then convert everything to consistent units, for example, BG:

$$
\begin{gathered}
\mathrm{Q}=40 \frac{\mathrm{~L}}{\mathrm{~s}}=1.41 \frac{\mathrm{ft}^{2}}{\mathrm{~s}} ; \quad \Delta \mathrm{p}=35 \frac{\mathrm{lbf}}{\mathrm{in}^{2}}=5040 \frac{\mathrm{lbf}}{\mathrm{ft}^{2}} ; \quad \text { Power }=16(550)=8800 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \\
\eta=\frac{\left(1.41 \mathrm{ft}^{3} / \mathrm{s}\right)\left(5040 \mathrm{lbf} / \mathrm{ft}^{2}\right)}{8800 \mathrm{ft} \cdot \mathrm{lbf} / \mathrm{s}} \approx 0.81 \text { or } \mathbf{8 1 \%} \text { Ans. }
\end{gathered}
$$

Similarly, one could convert to SI units: $\mathrm{Q}=0.04 \mathrm{~m}^{3} / \mathrm{s}, \Delta \mathrm{p}=241300 \mathrm{~Pa}$, and input power $=$ $16(745.7)=11930 \mathrm{~W}$, thus $\mathrm{h}=(0.04)(241300) /(11930)=\mathbf{0 . 8 1}$. Ans.

