1.12 For low-speed (laminar) flow in a tube of radius ro, the velocity u takes the form

$$\mathbf{u} = \mathbf{B} \frac{\Delta \mathbf{p}}{\mu} \left(\mathbf{r}_{\mathrm{o}}^2 - \mathbf{r}^2 \right)$$

where μ is viscosity and Δp the pressure drop. What are the dimensions of B?

Solution: Using Table 1-2, write this equation in dimensional form:

$$\{u\} = \{B\} \frac{\{\Delta p\}}{\{\mu\}} \{r^2\}, \text{ or: } \left\{\frac{L}{T}\right\} = \{B?\} \frac{\{M/LT^2\}}{\{M/LT\}} \{L^2\} = \{B?\} \left\{\frac{L^2}{T}\right\},$$

or:
$$\{B\} = \{L^{-1}\} \text{ Ans.}$$

The parameter B must have dimensions of inverse length. In fact, B is not a constant, it hides one of the variables in pipe flow. The proper form of the pipe flow relation is

$$\mathbf{u} = \mathbf{C} \frac{\Delta \mathbf{p}}{\mathbf{L}\boldsymbol{\mu}} \Big(\mathbf{r}_{\mathrm{o}}^2 - \mathbf{r}^2 \Big)$$

where L is the *length of the pipe* and C is a dimensionless constant which has the theoretical laminar-flow value of (1/4)—see Sect. 6.4.

1.13 The efficiency η of a pump is defined as

$$\eta = \frac{Q\Delta p}{\text{Input Power}}$$

where Q is volume flow and Δp the pressure rise produced by the pump. What is η if $\Delta p = 35$ psi, Q = 40 L/s, and the input power is 16 horsepower?

Solution: The student should perhaps verify that $Q\Delta p$ has units of power, so that η is a dimensionless ratio. Then convert everything to consistent units, for example, BG:

$$Q = 40 \frac{L}{s} = 1.41 \frac{ft^2}{s}; \quad \Delta p = 35 \frac{lbf}{in^2} = 5040 \frac{lbf}{ft^2}; \quad \text{Power} = 16(550) = 8800 \frac{ft \cdot lbf}{s}$$
$$\eta = \frac{(1.41 \text{ ft}^3/\text{s})(5040 \text{ lbf/ft}^2)}{8800 \text{ ft} \cdot \text{lbf/s}} \approx 0.81 \quad \text{or} \quad 81\% \quad Ans.$$

Similarly, one could convert to SI units: $Q = 0.04 \text{ m}^3/\text{s}$, $\Delta p = 241300 \text{ Pa}$, and input power = 16(745.7) = 11930 W, thus h = (0.04)(241300)/(11930) = 0.81. Ans.