The complete (small-slope) solution to this problem is:

$$\eta = h \exp[-(\rho g/Y)^{1/2} x]$$
, where $h = (Y/\rho g)^{1/2} \cot \theta$ Ans.

The formula clearly satisfies the requirement that $\eta = 0$ if $x = \infty$. It requires "small slope" and therefore the contact angle should be in the range $70^\circ < \theta < 110^\circ$.

1.69 A solid cylindrical needle of diameter d, length L, and density ρ_n may "float" on a liquid surface. Neglect buoyancy and assume a contact angle of 0°. Calculate the maximum diameter needle able to float on the surface.

Solution: The needle "dents" the surface downward and the surface tension forces are upward, as shown. If these tensions are nearly vertical, a vertical force balance gives:

$$\sum F_z = 0 = 2YL - \rho g \frac{\pi}{4} d^2 L$$
, or: $\mathbf{d}_{max} \approx \sqrt{\frac{\mathbf{8Y}}{\pi \rho g}}$ Ans. (a)

(b) Calculate dmax for a steel needle (SG \approx 7.84) in water at 20°C. The formula becomes:

$$d_{\max} = \sqrt{\frac{8Y}{\pi\rho g}} = \sqrt{\frac{8(0.073 \text{ N/m})}{\pi (7.84 \times 998 \text{ kg/m}^3)(9.81 \text{ m/s}^2)}} \approx 0.00156 \text{ m} \approx 1.6 \text{ mm} \text{ Ans. (b)}$$

1.70 Derive an expression for the capillaryheight change h, as shown, for a fluid of surface tension Y and contact angle θ between two parallel plates W apart. Evaluate h for water at 20°C if W = 0.5 mm.

Solution: With b the width of the plates into the paper, the capillary forces on each wall together balance the weight of water held above the reservoir free surface:

$$\rho gWhb = 2(Yb\cos\theta), \text{ or: } h \approx \frac{2Y\cos\theta}{\rho gW} \text{ Ans.}$$

For water at 20°C, Y \approx 0.0728 N/m, $\rho g \approx$ 9790 N/m³, and $\theta \approx 0^{\circ}$. Thus, for W = 0.5 mm,

$$h = \frac{2(0.0728 \text{ N/m})\cos 0^{\circ}}{(9790 \text{ N/m}^3)(0.0005 \text{ m})} \approx 0.030 \text{ m} \approx 30 \text{ mm} \text{ Ans}$$

1.71* A soap bubble of diameter D1 coalesces with another bubble of diameter D2 to form a single bubble D3 with the same amount of air. For an isothermal process, express D3 as a function of D1, D2, patm, and surface tension Y.

Solution: The masses remain the same for an isothermal process of an ideal gas:

$$m_{1} + m_{2} = \rho_{1}\upsilon_{1} + \rho_{2}\upsilon_{2} = m_{3} = \rho_{3}\upsilon_{3},$$

or: $\left(\frac{p_{a} + 4Y/r_{1}}{RT}\right)\left(\frac{\pi}{6}D_{1}^{3}\right) + \left(\frac{p_{a} + 4Y/r_{2}}{RT}\right)\left(\frac{\pi}{6}D_{2}^{3}\right) = \left(\frac{p_{a} + 4Y/r_{3}}{RT}\right)\left(\frac{\pi}{6}D_{3}^{3}\right)$

The temperature cancels out, and we may clean up and rearrange as follows:

$$\mathbf{p}_{a}\mathbf{D}_{3}^{3} + 8\mathbf{Y}\mathbf{D}_{3}^{2} = (\mathbf{p}_{a}\mathbf{D}_{2}^{3} + 8\mathbf{Y}\mathbf{D}_{2}^{2}) + (\mathbf{p}_{a}\mathbf{D}_{1}^{3} + 8\mathbf{Y}\mathbf{D}_{1}^{2})$$
 Ans

This is a cubic polynomial with a known right hand side, to be solved for D3.

1.72 Early mountaineers boiled water to estimate their altitude. If they reach the top and find that water boils at 84°C, approximately how high is the mountain?

Solution: From Table A-5 at 84°C, vapor pressure $p_V \approx 55.4$ kPa. We may use this value to interpolate in the standard altitude, Table A-6, to estimate

$$z \approx 4800 \text{ m}$$
 Ans.

1.73 A small submersible moves at velocity V in 20°C water at 2-m depth, where ambient pressure is 131 kPa. Its critical cavitation number is Ca \approx 0.25. At what velocity will cavitation bubbles form? Will the body cavitate if V = 30 m/s and the water is cold (5°C)?

Solution: From Table A-5 at 20°C read $p_V = 2.337$ kPa. By definition,

$$Ca_{crit} = 0.25 = \frac{2(p_a - p_v)}{\rho V^2} = \frac{2(131000 - 2337)}{(998 \text{ kg/m}^3)V^2}$$
, solve $V_{crit} \approx 32.1 \text{ m/s}$ Ans. (a)