The complete (small-slope) solution to this problem is:

$$
\eta=\mathbf{h} \exp \left[-(\rho \mathbf{g} / \mathbf{Y})^{1 / 2} \mathbf{x}\right], \quad \text { where } \mathrm{h}=(\mathrm{Y} / \rho \mathrm{g})^{1 / 2} \cot \theta \quad \text { Ans. }
$$

The formula clearly satisfies the requirement that $\eta=0$ if $\mathrm{x}=\infty$. It requires "small slope" and therefore the contact angle should be in the range $70^{\circ}<\theta<110^{\circ}$.
1.69 A solid cylindrical needle of diameter d , length L, and density ρ_{n} may "float" on a liquid surface. Neglect buoyancy and assume a contact angle of 0°. Calculate the maximum diameter needle able to float on the surface.

Fig. P1. 69

Solution: The needle "dents" the surface downward and the surface tension forces are upward, as shown. If these tensions are nearly vertical, a vertical force balance gives:

$$
\sum \mathrm{F}_{\mathrm{z}}=0=2 \mathrm{YL}-\rho \mathrm{g} \frac{\pi}{4} \mathrm{~d}^{2} \mathrm{~L}, \quad \text { or: } \quad \mathbf{d}_{\max } \approx \sqrt{\frac{\mathbf{8 Y}}{\pi \rho \mathbf{g}}} \quad \text { Ans. (a) }
$$

(b) Calculate dmax for a steel needle $(\mathrm{SG} \approx 7.84)$ in water at $20^{\circ} \mathrm{C}$. The formula becomes:

$$
\mathrm{d}_{\max }=\sqrt{\frac{8 \mathrm{Y}}{\pi \rho \mathrm{~g}}}=\sqrt{\frac{8(0.073 \mathrm{~N} / \mathrm{m})}{\pi\left(7.84 \times 998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}} \approx 0.00156 \mathrm{~m} \approx 1.6 \mathrm{~mm} \quad \text { Ans. (b) }
$$

1.70 Derive an expression for the capillaryheight change h, as shown, for a fluid of surface tension Y and contact angle θ between two parallel plates W apart. Evaluate h for water at $20^{\circ} \mathrm{C}$ if $\mathrm{W}=0.5 \mathrm{~mm}$.

Solution: With b the width of the plates into the paper, the capillary forces on each wall together balance the weight of water

Fig. P1.70 held above the reservoir free surface:

$$
\rho \mathrm{gWhb}=2(\mathrm{Yb} \cos \theta), \quad \text { or: } \mathrm{h} \approx \frac{\mathbf{2 Y} \cos \theta}{\rho \mathbf{g W}} \text { Ans. }
$$

For water at $20^{\circ} \mathrm{C}, \mathrm{Y} \approx 0.0728 \mathrm{~N} / \mathrm{m}, \rho \mathrm{g} \approx 9790 \mathrm{~N} / \mathrm{m}^{3}$, and $\theta \approx 0^{\circ}$. Thus, for $\mathrm{W}=0.5 \mathrm{~mm}$,

$$
\mathrm{h}=\frac{2(0.0728 \mathrm{~N} / \mathrm{m}) \cos 0^{\circ}}{\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right)(0.0005 \mathrm{~m})} \approx 0.030 \mathrm{~m} \approx \mathbf{3 0} \mathbf{~ m m} \quad \text { Ans. }
$$

1.71* A soap bubble of diameter D1 coalesces with another bubble of diameter D2 to form a single bubble D3 with the same amount of air. For an isothermal process, express D3 as a function of D1, D2, patm, and surface tension Y.

Solution: The masses remain the same for an isothermal process of an ideal gas:

$$
\begin{gathered}
\mathrm{m}_{1}+\mathrm{m}_{2}=\rho_{1} v_{1}+\rho_{2} v_{2}=\mathrm{m}_{3}=\rho_{3} v_{3}, \\
\text { or: } \quad\left(\frac{\mathrm{p}_{\mathrm{a}}+4 \mathrm{Y} / \mathrm{r}_{1}}{\mathrm{RT}}\right)\left(\frac{\pi}{6} \mathrm{D}_{1}^{3}\right)+\left(\frac{\mathrm{p}_{\mathrm{a}}+4 \mathrm{Y} / \mathrm{r}_{2}}{\mathrm{RT}}\right)\left(\frac{\pi}{6} \mathrm{D}_{2}^{3}\right)=\left(\frac{\mathrm{p}_{\mathrm{a}}+4 \mathrm{Y} / \mathrm{r}_{3}}{\mathrm{RT}}\right)\left(\frac{\pi}{6} \mathrm{D}_{3}^{3}\right)
\end{gathered}
$$

The temperature cancels out, and we may clean up and rearrange as follows:

$$
\mathbf{p}_{\mathrm{a}} \mathbf{D}_{3}^{3}+\mathbf{8 Y} \mathbf{D}_{3}^{2}=\left(\mathbf{p}_{\mathrm{a}} \mathbf{D}_{\mathbf{2}}^{3}+\mathbf{8 Y} \mathbf{D}_{2}^{2}\right)+\left(\mathbf{p}_{\mathrm{a}} \mathbf{D}_{1}^{3}+\mathbf{8 Y} \mathbf{D}_{1}^{2}\right) \quad A n s
$$

This is a cubic polynomial with a known right hand side, to be solved for D3.
1.72 Early mountaineers boiled water to estimate their altitude. If they reach the top and find that water boils at $84^{\circ} \mathrm{C}$, approximately how high is the mountain?

Solution: From Table A-5 at $84^{\circ} \mathrm{C}$, vapor pressure $\mathrm{p}_{\mathrm{v}} \approx 55.4 \mathrm{kPa}$. We may use this value to interpolate in the standard altitude, Table A-6, to estimate

$$
\mathrm{z} \approx 4800 \mathrm{~m} \quad \text { Ans. }
$$

1.73 A small submersible moves at velocity V in $20^{\circ} \mathrm{C}$ water at $2-\mathrm{m}$ depth, where ambient pressure is 131 kPa . Its critical cavitation number is $\mathrm{Ca} \approx 0.25$. At what velocity will cavitation bubbles form? Will the body cavitate if $\mathrm{V}=30 \mathrm{~m} / \mathrm{s}$ and the water is cold $\left(5^{\circ} \mathrm{C}\right)$?

Solution: From Table A-5 at $20^{\circ} \mathrm{C}$ read $\mathrm{p}_{\mathrm{v}}=2.337 \mathrm{kPa}$. By definition,

$$
\mathrm{Ca}_{\text {crit }}=0.25=\frac{2\left(\mathrm{p}_{\mathrm{a}}-\mathrm{p}_{\mathrm{v}}\right)}{\rho \mathrm{V}^{2}}=\frac{2(131000-2337)}{\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right) \mathrm{V}^{2}}, \quad \text { solve } \mathrm{V}_{\text {crit }} \approx 32.1 \mathrm{~m} / \mathrm{s} \quad \text { Ans. (a) }
$$

