2.103 A solid block, of specific gravity 0.9 , floats such that 75% of its volume is in water and 25% of its volume is in fluid X, which is layered above the water. What is the specific gravity of fluid X?

Solution: The block is sketched at right.
 A force balance is

$$
\begin{aligned}
0.9 \gamma(\mathrm{HbL}) & =\gamma(0.75 \mathrm{HbL})+\mathrm{SG}_{\mathrm{X}} \gamma(0.25 \mathrm{HbL}) \\
0.9-0.75 & =0.25 \mathrm{SG}_{\mathbf{X}}, \quad \boldsymbol{S} \boldsymbol{G}_{\mathbf{X}}=\mathbf{0 . 6} \quad \text { Ans } .
\end{aligned}
$$

2.104 The can in Fig. P2. 104 floats in the position shown. What is its weight in newtons?

Solution: The can weight simply equals the weight of the displaced water (neglecting the air above):

Fig. P2.104

$$
\mathrm{W}=\gamma v_{\text {displaced }}=(9790) \frac{\pi}{4}(0.09 \mathrm{~m})^{2}(0.08 \mathrm{~m})=\mathbf{5 . 0} \mathbf{N} \quad \text { Ans. }
$$

2.105 Archimedes, when asked by King Hiero if the new crown was pure gold $(\mathrm{SG}=19.3)$, found the crown weight in air to be 11.8 N and in water to be 10.9 N . Was it gold?

Solution: The buoyancy is the difference between air weight and underwater weight:

$$
\mathrm{B}=\mathrm{W}_{\text {air }}-\mathrm{W}_{\text {water }}=11.8-10.9=0.9 \mathrm{~N}=\gamma_{\text {water }} v_{\text {crown }}
$$

$$
\text { But also } \quad \mathrm{W}_{\text {air }}=(\mathrm{SG}) \gamma_{\text {water }} v_{\text {crown }}, \quad \text { so } \quad \mathrm{W}_{\text {in water }}=\mathrm{B}(\mathrm{SG}-1)
$$

Solve for $\quad \mathrm{SG}_{\text {crown }}=1+\mathrm{W}_{\text {in water }} / \mathrm{B}=1+10.9 / 0.9=\mathbf{1 3 . 1}$ (not pure gold) Ans.
2.106 A spherical helium balloon is 2.5 m in diameter and has a total mass of 6.7 kg . When released into the U. S. Standard Atmosphere, at what altitude will it settle?

