2.113 A *spar buoy* is a rod weighted to float vertically, as in Fig. P2.113. Let the buoy be maple wood (SG = 0.6), 2 in by 2 in by 10 ft, floating in seawater (SG = 1.025). How many pounds of steel (SG = 7.85) should be added at the bottom so that h = 18 in?

Solution: The relevant volumes needed are

Spar volume =
$$\frac{2}{12} \left(\frac{2}{12} \right) (10) = 0.278 \text{ ft}^3$$
; Steel volume = $\frac{W_{\text{steel}}}{7.85(62.4)}$
Immersed spar volume = $\frac{2}{12} \left(\frac{2}{12} \right) (8.5) = 0.236 \text{ ft}^3$

The vertical force balance is: buoyancy $B = W_{wood} + W_{steel}$,

or:
$$1.025(62.4) \left[0.236 + \frac{W_{steel}}{7.85(62.4)} \right] = 0.6(62.4)(0.278) + W_{steel}$$

 $15.09 + 0.1306W_{steel} = 10.40 + W_{steel}$, solve for $W_{steel} \approx 5.4$ lbf Ans.

2.114 The uniform rod in the figure is hinged at B and in static equilibrium when 2 kg of lead (SG = 11.4) are attached at its end. What is the specific gravity of the rod material? What is peculiar about the rest angle $\theta = 30^{\circ}$?

or:

Solution: First compute buoyancies: Brod = $9790(\pi/4)(0.04)^2(8) = 98.42$ N, and Wlead = 2(9.81) = 19.62 N, Blead = 19.62/11.4 = 1.72 N. Sum moments about B:

$$\sum M_B = 0 = (SG - 1)(98.42)(4\cos 30^\circ) + (19.62 - 1.72)(8\cos 30^\circ) = 0$$

Solve for **SG_{rod} = 0.636** Ans. (a)

The angle θ drops out! The rod is neutrally stable for **any tilt angle**! Ans. (b)