Solution: First, how high is the container? Well, 1 fluid oz. $=1.805 \mathrm{in}^{3}$, hence 12 fl . oz. $=$ $21.66 \mathrm{in}^{3}=\pi(1.5 \mathrm{in})^{2} \mathrm{~h}$, or $h \approx 3.06 \mathrm{in}$-It is a fat, nearly square little glass. Second, determine the acceleration toward the center of the merry-go-round, noting that the angular velocity is $\Omega=(12 \mathrm{rev} / \mathrm{min})(1 \mathrm{~min} / 60 \mathrm{~s})(2 \pi \mathrm{rad} / \mathrm{rev})=1.26 \mathrm{rad} / \mathrm{s}$. Then, for $r=4 \mathrm{ft}$,

$$
\mathrm{a}_{\mathrm{x}}=\Omega^{2} \mathrm{r}=(1.26 \mathrm{rad} / \mathrm{s})^{2}(4 \mathrm{ft})=6.32 \mathrm{ft} / \mathrm{s}^{2}
$$

Then, for steady rotation, the water surface in the glass will slope at the angle

$$
\tan \theta=\frac{\mathrm{a}_{\mathrm{x}}}{\mathrm{~g}+\mathrm{a}_{\mathrm{z}}}=\frac{6.32}{32.2+0}=0.196, \quad \text { or: } \Delta \mathrm{h}_{\text {left to center }}=(0.196)(1.5 \mathrm{in})=0.294 \text { in }
$$

Thus the glass should be filled to no more than $3.06-0.294 \approx 2.77$ inches This amount of liquid is $v=\pi(1.5 \mathrm{in})^{2}(2.77 \mathrm{in})=19.6 \mathrm{in}^{3} \approx \mathbf{1 0 . 8}$ fluid oz. Ans.
2.139 The tank of liquid in the figure P2.139 accelerates to the right with the fluid in rigid-body motion. (a) Compute a_{x} in $\mathrm{m} / \mathrm{s}^{2}$. (b) Why doesn't the solution to part (a) depend upon fluid density? (c) Compute gage pressure at point A if the fluid is glycerin at $20^{\circ} \mathrm{C}$.

Fig. P2. 139

Solution: (a) The slope of the liquid gives us the acceleration:

$$
\begin{aligned}
\tan \theta & =\frac{a_{x}}{g}=\frac{28-15 \mathrm{~cm}}{100 \mathrm{~cm}}=0.13, \quad \text { or: } \quad \theta=7.4^{\circ} \\
\text { thus } \quad a_{x} & =0.13 g=0.13(9.81)=\mathbf{1 . 2 8} \mathbf{~ m} / \mathbf{s}^{2} \quad \text { Ans. (a) }
\end{aligned}
$$

(b) Clearly, the solution to (a) is purely geometric and does not involve fluid density. Ans. (b)
(c) From Table A-3 for glycerin, $\rho=1260 \mathrm{~kg} / \mathrm{m}^{3}$. There are many ways to compute pA. For example, we can go straight down on the left side, using only gravity:

$$
p_{A}=\rho g \Delta z=\left(1260 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.28 \mathrm{~m})=\mathbf{3 4 6 0} \mathbf{~ P a} \text { (gage) Ans. (c) }
$$

Or we can start on the right side, go down 15 cm with g and across 100 cm with a_{x} :

$$
\begin{aligned}
p_{A} & =\rho g \Delta z+\rho a_{x} \Delta x=(1260)(9.81)(0.15)+(1260)(1.28)(1.00) \\
& =1854+1607=\mathbf{3 4 6 0} \mathbf{P a} \quad \text { Ans. (c) }
\end{aligned}
$$

