Solution: First, how high is the container? Well, 1 fluid oz. = 1.805 in³, hence 12 fl. oz. = 21.66 in³ = π (1.5 in)²h, or $h \approx 3.06$ in—It is a fat, nearly square little glass. Second, determine the acceleration toward the center of the merry-go-round, noting that the angular velocity is $\Omega = (12 \text{ rev/min})(1 \text{ min/60 s})(2\pi \text{ rad/rev}) = 1.26 \text{ rad/s}$. Then, for r = 4 ft,

$$a_x = \Omega^2 r = (1.26 \text{ rad/s})^2 (4 \text{ ft}) = 6.32 \text{ ft/s}^2$$

Then, for steady rotation, the water surface in the glass will slope at the angle

$$\tan \theta = \frac{a_x}{g + a_z} = \frac{6.32}{32.2 + 0} = 0.196$$
, or: $\Delta h_{\text{left to center}} = (0.196)(1.5 \text{ in}) = 0.294 \text{ in}$

Thus the glass should be filled to no more than $3.06 - 0.294 \approx 2.77$ inches This amount of liquid is $v = \pi (1.5 \text{ in})^2 (2.77 \text{ in}) = 19.6 \text{ in}^3 \approx 10.8$ fluid oz. Ans.

2.139 The tank of liquid in the figure P2.139 accelerates to the right with the fluid in rigid-body motion. (a) Compute ax in m/s².
(b) Why doesn't the solution to part (a) depend upon fluid density? (c) Compute gage pressure at point A if the fluid is glycerin at 20°C.

Solution: (a) The slope of the liquid gives us the acceleration:

$$\tan \theta = \frac{a_x}{g} = \frac{28 - 15 \text{ cm}}{100 \text{ cm}} = 0.13, \text{ or: } \theta = 7.4^{\circ}$$

thus $a_x = 0.13g = 0.13(9.81) = 1.28 \text{ m/s}^2$ Ans. (a)

(b) Clearly, the solution to (a) is purely geometric and does not involve fluid density. Ans. (b) (c) From Table A-3 for glycerin, $\rho = 1260 \text{ kg/m}^3$. There are many ways to compute pA. For example, we can go straight down on the left side, using only gravity:

$$p_A = \rho g \Delta z = (1260 \text{ kg/m}^3)(9.81 \text{ m/s}^2)(0.28 \text{ m}) = 3460 \text{ Pa (gage)}$$
 Ans. (c)

Or we can start on the right side, go down 15 cm with g and across 100 cm with ax:

$$p_A = \rho g \Delta z + \rho a_x \Delta x = (1260)(9.81)(0.15) + (1260)(1.28)(1.00)$$

= 1854 + 1607 = **3460 Pa** Ans. (c)