Solution: Given γ gasoline $=0.68(9790)=6657 \mathrm{~N} / \mathrm{m}^{3}$, compute the pressure when "full":

$$
\mathrm{p}_{\text {full }}=\gamma_{\text {gasoline }}(\text { full height })=\left(6657 \mathrm{~N} / \mathrm{m}^{3}\right)(0.30 \mathrm{~m})=1997 \mathrm{~Pa}
$$

Set this pressure equal to 2 cm of water plus " Y " centimeters of gasoline:

$$
\mathrm{p}_{\text {full }}=1997=9790(0.02 \mathrm{~m})+6657 \mathrm{Y}, \quad \text { or } \mathrm{Y} \approx 0.2706 \mathrm{~m}=27.06 \mathrm{~cm}
$$

Therefore the air gap $h=30 \mathrm{~cm}-2 \mathrm{~cm}$ (water) -27.06 cm (gasoline) $\approx \mathbf{0 . 9 4} \mathbf{c m}$ Ans.
2.23 In Fig. P2.23 both fluids are at $20^{\circ} \mathrm{C}$. If surface tension effects are negligible, what is the density of the oil, in $\mathrm{kg} / \mathrm{m}^{3}$?

Solution: Move around the U-tube from left atmosphere to right atmosphere:

$$
\begin{aligned}
\mathrm{p}_{\mathrm{a}} & +\left(9790 \mathrm{~N} / \mathrm{m}^{3}\right)(0.06 \mathrm{~m}) \\
& -\gamma_{\text {oil }}(0.08 \mathrm{~m})=\mathrm{p}_{\mathrm{a}}
\end{aligned}
$$

solve for $\quad \gamma_{\text {oil }} \approx 7343 \mathrm{~N} / \mathrm{m}^{3}$,

Fig. P2.23
or: $\quad \rho_{\text {oil }}=7343 / 9.81 \approx 748 \mathbf{~ k g} / \mathbf{m}^{3}$ Ans.
2.24 In Prob. 1.2 we made a crude integration of atmospheric density from Table A. 6 and found that the atmospheric mass is approximately $m \approx 6.08 \mathrm{E} 18 \mathrm{~kg}$. Can this result be used to estimate sea-level pressure? Can sea-level pressure be used to estimate m ?

Solution: Yes, atmospheric pressure is essentially a result of the weight of the air above. Therefore the air weight divided by the surface area of the earth equals sea-level pressure:

$$
\mathrm{p}_{\text {sea-level }}=\frac{\mathrm{W}_{\text {air }}}{\mathrm{A}_{\text {earth }}}=\frac{\mathrm{m}_{\text {air }} \mathrm{g}}{4 \pi \mathrm{R}_{\text {earth }}^{2}} \approx \frac{(6.08 \mathrm{E} 18 \mathrm{~kg})\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)}{4 \pi(6.377 \mathrm{E} 6 \mathrm{~m})^{2}} \approx \mathbf{1 1 7 0 0 0} \mathbf{~ P a} \text { Ans. }
$$

This is a little off, thus our mass estimate must have been a little off. If global average sea-level pressure is actually 101350 Pa , then the mass of atmospheric air must be more nearly

$$
\mathrm{m}_{\text {air }}=\frac{\mathrm{A}_{\text {earth }} \mathrm{p}_{\text {sea-level }}}{\mathrm{g}} \approx \frac{4 \pi(6.377 \mathrm{E} 6 \mathrm{~m})^{2}(101350 \mathrm{~Pa})}{9.81 \mathrm{~m} / \mathrm{s}^{2}} \approx \mathbf{5 . 2 8 E 1 8} \mathbf{~ k g} \quad \text { Ans. }
$$

