3.114 The 3-arm lawn sprinkler of Fig. P3.114 receives $20^{\circ} \mathrm{C}$ water through the center at $2.7 \mathrm{~m}^{3} / \mathrm{hr}$. If collar friction is neglected, what is the steady rotation rate in rev/min for (a) $\theta=0^{\circ}$; (b) $\theta=40^{\circ}$?

Solution: The velocity exiting each arm is

$$
\mathrm{V}_{\mathrm{o}}=\frac{\mathrm{Q} / 3}{(\pi / 4) \mathrm{d}^{2}}=\frac{2.7 /[(3600)(3)]}{(\pi / 4)(0.007)^{2}}=6.50 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Fig. P3.114

With negligible air drag and bearing friction, the steady rotation rate (Example 3.15) is

$$
\begin{aligned}
& \omega_{\text {final }}=\frac{\mathrm{V}_{0} \cos \theta}{\mathrm{R}} \text { (a) } \theta=0^{\circ}: \quad \omega=\frac{(6.50) \cos 0^{\circ}}{0.15 \mathrm{~m}}=43.3 \frac{\mathrm{rad}}{\mathrm{~s}}=414 \frac{\mathrm{rev}}{\mathrm{~min}} \quad \text { Ans. (a) } \\
& \text { (b) } \theta=40^{\circ}: \quad \omega=\omega_{0} \cos \theta=(414) \cos 40^{\circ}=\mathbf{3 1 7} \frac{\mathbf{r e v}}{\mathrm{min}} \quad \text { Ans. (b) }
\end{aligned}
$$

3.115 Water at $20^{\circ} \mathrm{C}$ flows at $30 \mathrm{gal} / \mathrm{min}$ through the 0.75 -in-diameter double pipe bend of Fig. P3.115. The pressures are $p 1=$ $30 \mathrm{lbf} / \mathrm{in}^{2}$ and $p 2=24 \mathrm{lbf} / \mathrm{in}^{2}$. Compute the torque T at point B necessary to keep the pipe from rotating.

Solution: This is similar to Example 3.13, of the text. The volume flow $\mathrm{Q}=30 \mathrm{gal} / \mathrm{min}=$

Fig. P3.115 $0.0668 \mathrm{ft}^{3} / \mathrm{s}$, and $\rho=1.94 \mathrm{slug} / \mathrm{ft}^{3}$. Thus the mass flow $\rho \mathrm{Q}=0.130$ slug $/ \mathrm{s}$. The velocity in the pipe is

$$
\mathrm{V}_{1}=\mathrm{V}_{2}=\mathrm{Q} / \mathrm{A}=\frac{0.0668}{(\pi / 4)(0.75 / 12)^{2}}=21.8 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

If we take torques about point B , then the distance " h 1 ," from $\mathrm{p} .143,=0$, and $\mathrm{h} 2=3 \mathrm{ft}$. The final torque at point B, from "Ans. (a)" on p. 143 of the text, is

$$
\mathrm{T}_{\mathrm{B}}=\mathrm{h}_{2}\left(\mathrm{p}_{2} \mathrm{~A}_{2}+\dot{\mathrm{m}} \mathrm{~V}_{2}\right)=(3 \mathrm{ft})\left[(24 \mathrm{psi}) \frac{\pi}{4}(0.75 \mathrm{in})^{2}+(0.130)(21.8)\right] \approx \mathbf{4 0} \mathbf{f t} \cdot \mathbf{l b f} \quad \text { Ans. }
$$

