$$
\text { Thus } \mathrm{L}=-\frac{(1 / 2) \rho \mathrm{V}^{2}\left(\mathrm{~h}_{2}^{2}-\mathrm{h}_{3}^{2}\right)}{\rho \mathrm{V}^{2} \mathrm{~h}_{1} \sin \theta}=-\frac{\left(\mathrm{h}_{2}^{2}-\mathrm{h}_{3}^{2}\right)}{2 \mathrm{~h}_{1} \sin \theta}=-\frac{\mathbf{1}}{\mathbf{2}} \mathbf{h}_{\mathbf{1}} \cot \theta \quad \text { Ans. }
$$

The latter result follows from the (h1, h2, h3) relations in 3.46. The C.P. is below point O .
3.123 The waterwheel in Fig. P3.123 is being driven at $200 \mathrm{r} / \mathrm{min}$ by a $150-\mathrm{ft} / \mathrm{s}$ jet of water at $20^{\circ} \mathrm{C}$. The jet diameter is 2.5 in . Assuming no losses, what is the horsepower developed by the wheel? For what speed $\Omega \mathrm{r} / \mathrm{min}$ will the horsepower developed be a maximum? Assume that there are many buckets on the waterwheel.

Solution: First convert $\Omega=200 \mathrm{rpm}=$ $20.9 \mathrm{rad} / \mathrm{s}$. The bucket velocity $=\mathrm{Vb}=$ $\Omega R=(20.9)(4)=83.8 \mathrm{ft} / \mathrm{s}$. From Prob. 3.51

Fig. P3. 123 of this Manual, if there are many buckets, the entire (absolute) jet mass flow does the work:

$$
\begin{aligned}
\mathrm{P} & =\dot{\mathrm{m}}_{\text {jet }} \mathrm{V}_{\mathrm{b}}\left(\mathrm{~V}_{\text {jet }}-\mathrm{V}_{\mathrm{b}}\right)\left(1-\cos 165^{\circ}\right)=\rho \mathrm{A}_{\text {jet }} \mathrm{V}_{\text {jet }} \mathrm{V}_{\mathrm{b}}\left(\mathrm{~V}_{\text {jet }}-\mathrm{V}_{\mathrm{b}}\right)(1.966) \\
& =(1.94) \frac{\pi}{4}\left(\frac{2.5}{12}\right)^{2}(150)(83.8)(150-83.8)(1.966) \\
& =108200 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}} \approx \mathbf{1 9 7} \mathbf{~ h p} \quad \text { Ans. }
\end{aligned}
$$

Prob. 3.51: Max. power is for $\mathrm{Vb}=\mathrm{Vjet}^{2} / 2=75 \mathrm{ft} / \mathrm{s}$, or $\Omega=18.75 \mathrm{rad} / \mathrm{s}=\mathbf{1 7 9} \mathbf{~ r p m}$ Ans.
3.124 A rotating dishwasher arm delivers at $60^{\circ} \mathrm{C}$ to six nozzles, as in Fig. P3.124. The total flow rate is $3.0 \mathrm{gal} / \mathrm{min}$. Each nozzle has a diameter of $\frac{3}{16}$ in. If the nozzle flows are equal and friction is neglected, estimate the steady rotation rate of the arm, in $\mathrm{r} / \mathrm{min}$.

Fig. P3. 124

