velocity, decaying vertically above the wake according to the variation $u \approx U_{0}+\Delta U e^{-z / L}$, where L is the plate height and $z=0$ is the top of the wake. Find ΔU as a function of stream speed U o.

Fig. P3. 25
Solution: For a control volume enclosing the upper half of the plate and the section where the exponential profile applies, extending upward to a large distance H such that $\exp (-\mathrm{H} / \mathrm{L}) \approx 0$, we must have inlet and outlet volume flows the same:

$$
\begin{gathered}
\mathrm{Q}_{\mathrm{in}}=\int_{-\mathrm{L} / 2}^{\mathrm{H}} \mathrm{U}_{\mathrm{o}} \mathrm{dz}=\mathrm{Q}_{\mathrm{out}}=\int_{0}^{\mathrm{H}}\left(\mathrm{U}_{\mathrm{o}}+\Delta \mathrm{Ue}^{-\mathrm{z} / \mathrm{L}}\right) \mathrm{dz}, \quad \text { or: } \quad \mathrm{U}_{\mathrm{o}}\left(\mathrm{H}+\frac{\mathrm{L}}{2}\right)=\mathrm{U}_{\mathrm{o}} \mathrm{H}+\Delta \mathrm{UL} \\
\text { Cancel } \mathrm{U}_{\mathrm{o}} \mathrm{H} \text { and solve for } \Delta \mathrm{U} \approx \frac{\mathbf{1}}{\mathbf{2}} \mathbf{U}_{\mathbf{0}} \quad \text { Ans. }
\end{gathered}
$$

3.26 A thin layer of liquid, draining from an inclined plane, as in the figure, will have a laminar velocity profile $u=U_{0}\left(2 y / h-y^{2} / h^{2}\right)$, where U_{o} is the surface velocity. If the plane has width b into the paper, (a) determine the volume rate of flow of the film. (b) Suppose that $h=0.5$ in and the flow rate per foot of channel width is $1.25 \mathrm{gal} / \mathrm{min}$. Estimate U_{o} in ft / s.

Solution: (a) The total volume flow is computed by integration over the flow area:

$$
Q=\int V_{n} d A=\int_{0}^{h} U_{o}\left(\frac{2 y}{h}-\frac{y^{2}}{h^{2}}\right) b d y=\frac{\mathbf{2}}{\mathbf{3}} \mathbf{U}_{\mathbf{0}} \mathbf{b h} \quad \text { Ans. (a) }
$$

(b) Evaluate the above expression for the given data:

$$
\begin{aligned}
Q=1.25 \frac{\mathrm{gal}}{\mathrm{~min}} & =0.002785 \frac{\mathrm{ft}^{3}}{s}=\frac{2}{3} U_{o} b h=\frac{2}{3} U_{o}(1.0 \mathrm{ft})\left(\frac{0.5}{12} \mathrm{ft}\right), \\
& \text { solve for } U_{o}=\mathbf{0 . 1 0} \frac{\mathbf{f t}}{\mathbf{s}} \text { Ans. (b) }
\end{aligned}
$$

