velocity, decaying vertically above the wake according to the variation $u \approx U_0 + \Delta U e^{-z/L}$, where L is the plate height and z = 0 is the top of the wake. Find ΔU as a function of stream speed U_0 .

Solution: For a control volume enclosing the upper half of the plate and the section where the exponential profile applies, extending upward to a large distance H such that $exp(-H/L) \approx 0$, we must have inlet and outlet volume flows the same:

$$Q_{in} = \int_{-L/2}^{H} U_o dz = Q_{out} = \int_{0}^{H} (U_o + \Delta U e^{-z/L}) dz, \quad \text{or:} \quad U_o \left(H + \frac{L}{2}\right) = U_o H + \Delta U L$$

Cancel $U_o H$ and solve for $\Delta U \approx \frac{1}{2} U_o$ Ans.

3.26 A thin layer of liquid, draining from an inclined plane, as in the figure, will have a laminar velocity profile $u = U_0(2y/h - y^2/h^2)$, where U₀ is the surface velocity. If the plane has width *b* into the paper, (a) determine the volume rate of flow of the film. (b) Suppose that h = 0.5 in and the flow rate per foot of channel width is 1.25 gal/min. Estimate U₀ in ft/s.

Solution: (a) The total volume flow is computed by integration over the flow area:

$$Q = \int V_n \, dA = \int_0^h U_o \left(\frac{2y}{h} - \frac{y^2}{h^2}\right) b \, dy = \frac{2}{3} \mathbf{U}_0 \mathbf{b} \mathbf{h} \quad Ans. \text{ (a)}$$

(b) Evaluate the above expression for the given data:

$$Q = 1.25 \ \frac{gal}{\min} = 0.002785 \ \frac{ft^3}{s} = \frac{2}{3} U_o bh = \frac{2}{3} U_o (1.0 \ ft) \left(\frac{0.5}{12} \ ft\right),$$

solve for $U_o = 0.10 \ \frac{ft}{s}$ Ans. (b)