3.34 A rocket motor is operating steadily, as shown in Fig. P3.34. The products of combustion flowing out the exhaust nozzle approximate a perfect gas with a molecular weight of 28 . For the given conditions calculate $V 2 \mathrm{in} \mathrm{ft} / \mathrm{s}$.

Solution: Exit gas: Molecular weight $=$ 28 , thus Rgas $=49700 / 28=1775 \mathrm{ft}^{2} /\left(\mathrm{s}^{2} \cdot{ }^{\circ} \mathrm{R}\right)$. Then,

Fig. P3.34

$$
\rho_{\text {exit gas }}=\frac{\mathrm{p}}{\mathrm{RT}}=\frac{15(144) \mathrm{psf}}{(1775)(1100+460)} \approx 0.000780 \mathrm{slug} / \mathrm{ft}^{2}
$$

For mass conservation, the exit mass flow must equal fuel + oxygen entering $=0.6 \mathrm{slug} / \mathrm{s}$:

$$
\dot{\mathrm{m}}_{\mathrm{exit}}=0.6 \frac{\text { slug }}{\mathrm{s}}=\rho_{\mathrm{e}} \mathrm{~A}_{\mathrm{e}} \mathrm{~V}_{\mathrm{e}}=(0.00078) \frac{\pi}{4}\left(\frac{5.5}{12}\right)^{2} \mathrm{~V}_{\mathrm{e}}, \quad \text { solve for } \mathrm{V}_{\mathrm{e}} \approx \mathbf{4 6 6 0} \frac{\mathbf{f t}}{\mathbf{s}} \text { Ans. }
$$

3.35 In contrast to the liquid rocket in Fig. P3.34, the solid-propellant rocket in Fig. P3.35 is self-contained and has no entrance ducts. Using a control-volume analysis for the conditions shown in Fig. P3.35, compute the rate of mass loss

Fig. P3.35 of the propellant, assuming that the exit gas has a molecular weight of 28 .

Solution: With $\mathrm{M}=28, \mathrm{R}=8313 / 28=297 \mathrm{~m}^{2} /\left(\mathrm{s}^{2} \cdot \mathrm{~K}\right)$, hence the exit gas density is

$$
\rho_{\text {exit }}=\frac{\mathrm{p}}{\mathrm{RT}}=\frac{90,000 \mathrm{~Pa}}{(297)(750 \mathrm{~K})}=0.404 \mathrm{~kg} / \mathrm{m}^{3}
$$

For a control volume enclosing the rocket engine and the outlet flow, we obtain

$$
\frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{~m}_{\mathrm{CV}}\right)+\dot{\mathrm{m}}_{\mathrm{out}}=0
$$

or: $\quad \frac{\mathrm{d}}{\mathrm{dt}}\left(\mathrm{m}_{\text {propellant }}\right)=-\dot{\mathrm{m}}_{\text {exit }}=-\rho_{\mathrm{e}} \mathrm{A}_{\mathrm{e}} \mathrm{V}_{\mathrm{e}}=-(0.404)(\pi / 4)(0.18)^{2}(1150) \approx-\mathbf{1 1 . 8} \frac{\mathbf{k g}}{\mathbf{s}} \quad$ Ans.

