resulting velocity distribution. The fluid is at rest
far from the cylinder. [HINT: the cylinder does
not induce any radial motion.]

Solution: We already have the useful hint that $v_{\mathrm{r}}=0$. Continuity then tells us that $(1 / r) \partial v_{\theta} / \partial \theta=0$, hence v_{θ} does not vary with θ. Navier-Stokes then yields the flow. From Eq. D.6, the tangential momentum relation, with $\partial p / \partial \theta=0$ and $v_{\theta}=f(r)$, we obtain Eq. (4.139):

$$
\begin{aligned}
& \frac{1}{r} \frac{d}{d r}\left(r \frac{d v_{\theta}}{d r}\right)=\frac{v_{\theta}}{r^{2}}, \quad \text { Solution: } v_{\theta}=C_{1} r+\frac{C_{2}}{r} \\
& \text { As } r \rightarrow \infty, v_{\theta} \rightarrow 0, \text { hence } C_{1}=0 \\
& \text { At } r=R, \quad v_{\theta}=\Omega R=\frac{C_{2}}{R} ; C_{2}=\Omega R^{2} ; \text { Finally, } v_{\theta}=\frac{\Omega R^{2}}{r} \quad \text { Ans. }
\end{aligned}
$$

Rotating a cylinder in a large expanse of fluid sets up (eventually) a potential vortex flow.
*P4.95 Two immiscible liquids of equal thickness h are being sheared between a fixed and a moving plate, as in Fig. P4.95. Gravity is neglected,
 and there is no variation with x.

> Fig. P4.95

Find an expression for (a) the velocity at the interface; and (b) the shear stress in each fluid. Assume steady laminar flow.

