where $\dot{Q}=$ heat flow, J / s
$A=$ surface area, m^{2}
$\Delta T=$ temperature difference, K
The dimensionless form of h, called the Stanton number, is a combination of h, fluid density ρ, specific heat $c p$, and flow velocity V. Derive the Stanton number if it is proportional to h.

Solution: If $\{\dot{\mathrm{Q}}\}=\{\mathrm{hA} \Delta \mathrm{T}\}, \quad$ then $\left\{\frac{\mathrm{ML}^{2}}{\mathrm{~T}^{3}}\right\}=\{\mathrm{h}\}\left\{\mathrm{L}^{2}\right\}\{\Theta\}, \quad$ or: $\quad\{\mathrm{h}\}=\left\{\frac{\mathrm{M}}{\Theta \mathrm{T}^{3}}\right\}$
Then $\{$ Stanton No. $\}=\left\{\mathrm{h}^{1} \rho^{\mathrm{b}} \mathrm{c}_{\mathrm{p}}{ }^{\mathrm{c}} \mathrm{V}^{\mathrm{d}}\right\}=\left\{\frac{\mathrm{M}}{\Theta \mathrm{T}^{3}}\right\}\left\{\frac{\mathrm{M}}{\mathrm{L}^{3}}\right\}^{\mathrm{b}}\left\{\frac{\mathrm{L}^{2}}{\mathrm{~T}^{2} \Theta}\right\}^{\mathrm{c}}\left\{\frac{\mathrm{L}}{\mathrm{T}}\right\}^{\mathrm{d}}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \Theta^{0}$
Solve for $b=-1, c=-1$, and $d=-1$.
Thus, finally, Stanton Number $=\mathrm{h} \rho^{-1} \mathbf{c}_{\mathrm{p}}{ }^{-1} \mathrm{~V}^{-1}=\frac{\mathbf{h}}{\rho \mathbf{V} \mathbf{c}_{\mathbf{p}}}$ Ans.
5.17 The pressure drop per unit length $\Delta p / L$ in a porous, rotating duct (Really! See Ref. 35) depends upon average velocity V, density ρ, viscosity μ, duct height h, wall injection velocity v_{w}, and rotation rate Ω. Using (ρ, V, h) as repeating variables, rewrite this relationship in dimensionless form.

Solution: The relevant dimensions are $\{\Delta p / L\}=\left\{\mathrm{ML}^{-2} \mathrm{~T}^{-2}\right\},\{V\}=\left\{\mathrm{LT}^{-1}\right\},\{\rho\}=\left\{\mathrm{ML}^{-3}\right\}$, $\{\mu\}=\left\{\mathrm{ML}^{-1} \mathrm{~T}^{-1}\right\},\{h\}=\{\mathrm{L}\},\left\{v_{\mathrm{w}}\right\}=\left\{\mathrm{LT}^{-1}\right\}$, and $\{\Omega\}=\left\{\mathrm{T}^{-1}\right\}$. With $n=7$ and $j=3$, we expect $n-j=k=4$ pi groups: They are found, as specified, using (ρ, V, h) as repeating variables:

$$
\begin{aligned}
& \quad \Pi_{1}=\rho^{a} V^{b} h^{c} \frac{\Delta p}{L}=\left\{\frac{M}{L^{3}}\right\}^{a}\left\{\frac{L}{T}\right\}^{b}\{L\}^{c}\left\{\frac{M}{L^{2} T^{2}}\right\}=M^{0} L^{0} T^{0}, \text { solve } a=-1, b=-2, c=1 \\
& \Pi_{2}=\rho^{a} V^{b} h^{c} \mu^{-1}=\left\{\frac{M}{L^{3}}\right\}^{a}\left\{\frac{L}{T}\right\}^{b}\{L\}^{c}\left\{\frac{M}{L T}\right\}^{-1}=M^{0} L^{0} T^{0}, \text { solve } a=1, b=1, c=1 \\
& \Pi_{3}=\rho^{a} V^{b} h^{c} \Omega=\left\{\frac{M}{L^{3}}\right\}^{a}\left\{\frac{L}{T}\right\}^{b}\{L\}^{c}\left\{\frac{1}{T}\right\}=M^{0} L^{0} T^{0}, \text { solve } a=0, b=-1, c=1 \\
& \Pi_{4}=\rho^{a} V^{b} h^{c} v_{w}=\left\{\frac{M}{L^{3}}\right\}^{a}\left\{\frac{L}{T}\right\}^{b}\{L\}^{c}\left\{\frac{L}{T}\right\}=M^{0} L^{0} T^{0}, \text { solve } a=0, b=-1, c=0
\end{aligned}
$$

The final dimensionless function then is given by:

$$
\Pi_{1}=f c n\left(\Pi_{2}, \Pi_{3}, \Pi_{4}\right), \quad \text { or: } \quad \frac{\Delta p}{L} \frac{h}{\rho V^{2}}=f c n\left(\frac{\rho V h}{\mu}, \frac{\Omega h}{V}, \frac{v_{w}}{V}\right) \quad A n s .
$$

5.18 Under laminar conditions, the volume flow Q through a small triangular-section pore of side length b and length L is a function of viscosity μ, pressure drop per unit length $\Delta p / L$, and b. Using the pi theorem, rewrite this relation in dimensionless form. How does the volume flow change if the pore size b is doubled?

Solution: Establish the variables and their dimensions:

$$
\begin{gathered}
\mathrm{Q}=\operatorname{fcn}(\Delta \mathrm{p} / \mathrm{L}, \quad \mu \quad, \quad \mathrm{~b}) \\
\left\{\mathrm{L}^{3} / \mathrm{T}\right\} \quad\left\{\mathrm{M} / \mathrm{L}^{2} \mathrm{~T}^{2}\right\}
\end{gathered} \begin{gathered}
\{\mathrm{M} / \mathrm{LT}\}
\end{gathered}
$$

Then $n=4$ and $j=3$, hence we expect $\mathrm{n}-\mathrm{j}=4-3=\mathbf{1}$ Pi group, found as follows:

$$
\begin{gathered}
\Pi_{1}=(\Delta \mathrm{p} / \mathrm{L})^{\mathrm{a}}(\mu)^{\mathrm{b}}(\mathrm{~b})^{\mathrm{c}} \mathrm{Q}^{1}=\left\{\mathrm{M} / \mathrm{L}^{2} \mathrm{~T}^{2}\right\}^{\mathrm{a}}\{\mathrm{M} / \mathrm{LT}\}^{\mathrm{b}}\{\mathrm{~L}\}^{\mathrm{c}}\left\{\mathrm{~L}^{3} / \mathrm{T}\right\}^{1}=\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{0} \\
M: \mathrm{a}+\mathrm{b}=0 ; \quad L:-2 \mathrm{a}-\mathrm{b}+\mathrm{c}+3=0 ; \quad T:-2 \mathrm{a}-\mathrm{b}-1=0, \\
\text { solve } \quad \mathrm{a}=-1, \mathrm{~b}=+1, \mathrm{c}=-4
\end{gathered}
$$

$$
\Pi_{1}=\frac{\mathbf{Q} \mu}{(\Delta \mathbf{p} / \mathbf{L}) \mathbf{b}^{4}}=\mathbf{c o n s t a n t} \quad \text { Ans. }
$$

Clearly, if b is doubled, the flow rate Q increases by a factor of $\underline{\mathbf{1 6}}$. Ans.
5.19 The period of oscillation T of a water surface wave is assumed to be a function of density ρ, wavelength λ, depth h, gravity g, and surface tension Y. Rewrite this relationship in dimensionless form. What results if Y is negligible?

Solution: Establish the variables and their dimensions:

$$
\begin{aligned}
& \mathrm{T}=\mathrm{fcn}(\quad \rho \quad, \lambda, \mathrm{~h}, \mathrm{~g}, \mathrm{Y}) \\
& \{\mathrm{T}\} \quad\left\{\mathrm{M} / \mathrm{L}^{3}\right\} \quad\{\mathrm{L}\} \quad\{\mathrm{L}\} \quad\left\{\mathrm{L} / \mathrm{T}^{2}\right\}\left\{\mathrm{M} / \mathrm{T}^{2}\right\}
\end{aligned}
$$

Then $n=6$ and $j=3$, hence we expect $\mathrm{n}-\mathrm{j}=6-3=\mathbf{3}$ Pi groups, capable of various arrangements and selected by myself as follows:

Typical final result: $\quad \mathbf{T}(\mathbf{g} / \lambda)^{\mathbf{1 / 2}}=\mathbf{f c n}\left(\frac{\mathbf{h}}{\lambda}, \frac{\mathbf{Y}}{\rho \mathbf{g} \lambda^{2}}\right)$ Ans.

