If Y is negligible,
$$\rho$$
 drops out also, leaving: $T(g/\lambda)^{1/2} = fcn\left(\frac{h}{\lambda}\right)$ Ans.

5.20 We can extend Prob. 5.18 to the case of laminar duct flow of a non-newtonian fluid, for which the simplest relation for stress versus strain-rate is the *power-law* approximation:

$$\tau = C \left(\frac{d\theta}{dt}\right)^n$$

This is the analog of Eq. (1.23). The constant *C* takes the place of viscosity. If the exponent *n* is less than (greater than) unity, the material simulates a pseudoplastic (dilatant) fluid, as illustrated in Fig. 1.7. (a) Using the {MLT} system, determine the dimensions of *C*. (b) The analog of Prob. 5.18 for Power-law laminar triangular-duct flow is $Q = \text{fcn}(C, \Delta p/L, b)$. Rewrite this function in the form of dimensionless Pi groups.

Solution: The shear stress and strain rate have the dimensions $\{\tau\} = \{ML^{-1}T^{-2}\}$, and $\{d\theta/dt\} = \{T^{-1}\}$.

(a) Using these in the equation enables us to find the dimensions of *C*:

$$\left\{\frac{M}{LT^2}\right\} = \{C\} \left\{\frac{1}{T}\right\}^n, \text{ hence } \{C\} = \left\{\frac{M}{LT^{2-n}}\right\} \text{ Ans. (a)}$$

Now that we know {C}, combine it with {Q} = { $L^{3}T^{-1}$ }, { $\Delta p/L$ } = { $ML^{-2}T^{-2}$ }, and {b} = {L}. Note that there are 4 variables and j = 3 {MLT}, hence we expect 4 – 3 = only *one* pi group:

$$\{Q\}^{a} \left\{\frac{\Delta p}{L}\right\}^{b} \{L\}^{c} \{C\} = \left\{\frac{L^{3}}{T}\right\}^{a} \left\{\frac{M}{L^{2}T^{2}}\right\}^{b} \{L\}^{c} \left\{\frac{M}{LT^{2-n}}\right\} = M^{0}L^{0}T^{0},$$

solve $a = n, b = -1, c = -3n - 1$

The one and only dimensionless pi group is thus:

$$\Pi_1 = \frac{Q^n C}{(\Delta p/L)b^{3n+1}} = \text{constant} \quad Ans. \text{ (b)}$$

5.21 In Example 5.1 we used the pi theorem to develop Eq. (5.2) from Eq. (5.1). Instead of merely listing the primary dimensions of each variable, some workers list the *powers* of each primary dimension for each variable in an array:

380

	F	L	U	ρ	μ
М	1	0	0	1	1
L	1	1	1	-3	-1
Τ	$\begin{bmatrix} 1\\ 1\\ -2 \end{bmatrix}$	0	-1	0	-1

This array of exponents is called the *dimensional matrix* for the given function. Show that the *rank* of this matrix (the size of the largest nonzero determinant) is equal to j = n - k, the desired reduction between original variables and the pi groups. This is a general property of dimensional matrices, as noted by Buckingham [29].

Solution: The <u>rank</u> of a matrix is the size of the largest submatrix within which has a *non-zero determinant*. This means that the constants in that submatrix, when considered as coefficients of algebraic equations, are *linearly independent*. Thus we establish the number of *independent* parameters—<u>adding one more</u> forms a dimensionless group. For the example shown, the rank is <u>three</u> (note the very first 3×3 determinant on the left has a non-zero determinant). Thus "j" = 3 for the drag force system of variables.

5.22 The angular velocity Ω of a windmill is a function of windmill diameter *D*, wind velocity *V*, air density ρ , windmill height H as compared to atmospheric boundary layer height *L*, and the number of blades *N*: $\Omega = \text{fcn}(D, V, \rho, H/L, N)$. Viscosity effects are negligible. Rewrite this function in terms of dimensionless Pi groups.

Solution: We have n = 6 variables, j = 3 dimensions (M, L, T), thus expect n - j = 3 Pi groups. Since only ρ has *mass* dimensions, it <u>drops out</u>. After some thought, we realize that *H/L* and *N* are already dimensionless! The desired dimensionless function becomes:

$$\frac{\Omega \mathbf{D}}{\mathbf{V}} = fcn\left(\frac{\mathbf{H}}{\mathbf{L}},\mathbf{N}\right) \quad Ans.$$

5.23 The period *T* of vibration of a beam is a function of its length *L*, area moment of inertia *I*, modulus of elasticity *E*, density ρ , and Poisson's ratio σ . Rewrite this relation in dimensionless form. What further reduction can we make if *E* and *I* can occur only in the product form *EI*?

Solution: Establish the variables and their dimensions:

$$T = fcn(L, I, E, \rho, \sigma)$$

{T} {L} {L} {M/LT²} {M/L³} {none}

Then n = 6 and j = 3, hence we expect n - j = 6 - 3 = 3 Pi groups, capable of various arrangements and selected by myself as follows: [Note that σ must be a Pi group.]

381