Solution: (a) Since all terms in the equation contain C, we establish the dimensions of k and \mathcal{D} by comparing $\{k\}$ and $\left\{\mathcal{D} \partial^{2} / \partial \mathrm{x}^{2}\right\}$ to $\{u \partial / \partial x\}$:

$$
\begin{aligned}
& \{k\}=\{\mathcal{D}\}\left\{\frac{\partial^{2}}{\partial \mathrm{x}^{2}}\right\}=\{\mathcal{D}\}\left\{\frac{1}{\mathrm{~L}^{2}}\right\}=\{u\}\left\{\frac{\partial}{\partial x}\right\}=\left\{\frac{L}{T}\right\}\left\{\frac{1}{L}\right\}, \\
& \text { hence } \quad\{\boldsymbol{k}\}=\left\{\frac{\boldsymbol{1}}{\boldsymbol{T}}\right\} \text { and }\{\mathcal{D}\}=\left\{\frac{\boldsymbol{L}^{2}}{\boldsymbol{T}}\right\} \text { Ans. (a) }
\end{aligned}
$$

(b) To non-dimensionalize the equation, define $u^{*}=u / V, t^{*}=V t / L$, and $x^{*}=x / L$ and sub-stitute into the basic partial differential equation. The dimensionless result is

$$
\boldsymbol{u}^{*} \frac{\partial C}{\partial \boldsymbol{x}^{*}}=\left(\frac{\mathcal{D}}{\boldsymbol{V} \boldsymbol{L}}\right) \frac{\partial^{2} C}{\partial \boldsymbol{x}^{*^{2}}}-\left(\frac{\boldsymbol{k} L}{\boldsymbol{V}}\right) \boldsymbol{C}-\frac{\partial \boldsymbol{C}}{\partial \boldsymbol{t}^{*}} \text {, where } \frac{V L}{\mathcal{D}}=\text { mass-transfer Peclet number Ans. (b) }
$$

5.46 The differential equation for compressible inviscid flow of a gas in the $x y$ plane is

$$
\frac{\partial^{2} \phi}{\partial t^{2}}+\frac{\partial}{\partial t}\left(u^{2}+v^{2}\right)+\left(u^{2}-a^{2}\right) \frac{\partial^{2} \phi}{\partial x^{2}}+\left(v^{2}-a^{2}\right) \frac{\partial^{2} \phi}{\partial y^{2}}+2 u v \frac{\partial^{2} \phi}{\partial x \partial y}=0
$$

where ϕ is the velocity potential and a is the (variable) speed of sound of the gas. Nondimensionalize this relation, using a reference length L and the inlet speed of sound a_{0} as parameters for defining dimensionless variables.

Solution: The appropriate dimensionless variables are $u^{*}=u / a_{0}, t^{*}=a_{0} t / L, x^{*}=x / L$, $\mathrm{a}^{*}=\mathrm{a} / \mathrm{a}_{\mathrm{o}}$, and $\phi^{*}=\phi /\left(\mathrm{a}_{0} \mathrm{~L}\right)$. Substitution into the PDE for ϕ as above yields

$$
\frac{\partial^{2} \phi^{*}}{\partial \mathbf{t}^{* 2}}+\frac{\partial}{\partial \mathbf{t}^{*}}\left(\mathbf{u}^{*^{2}}+\mathbf{v}^{* 2}\right)+\left(\mathbf{u}^{* 2}-\mathbf{a}^{*^{2}}\right) \frac{\partial^{2} \phi^{*}}{\partial \mathbf{x}^{*^{2}}}+\left(\mathbf{v}^{* 2}-\mathbf{a}^{* 2}\right) \frac{\partial^{2} \phi^{*}}{\partial \mathbf{y}^{* 2}}+2 \mathbf{u}^{*} \mathbf{v}^{*} \frac{\partial^{2} \phi^{*}}{\partial \mathbf{x}^{*} \partial \mathbf{y}^{*}}=\mathbf{0} \quad \text { Ans. }
$$

The PDE comes clean and there are no dimensionless parameters. Ans.
5.47 The differential equation for small-amplitude vibrations $y(x, t)$ of a simple beam is given by

$$
\rho A \frac{\partial^{2} y}{\partial t^{2}}+E I \frac{\partial^{4} y}{\partial x^{4}}=0
$$

where $\rho=$ beam material density
$A=$ cross-sectional area
$I=$ area moment of inertia
$E=$ Young's modulus

Use only the quantities ρ, E, and A to nondimensionalize y, x, and t, and rewrite the differential equation in dimensionless form. Do any parameters remain? Could they be removed by further manipulation of the variables?

Solution: The appropriate dimensionless variables are

$$
\mathrm{y}^{*}=\frac{\mathrm{y}}{\sqrt{\mathrm{~A}}} ; \quad \mathrm{t}^{*}=\mathrm{t} \sqrt{\frac{\mathrm{E}}{\rho \mathrm{~A}}} ; \quad \mathrm{x}^{*}=\frac{\mathrm{x}}{\sqrt{\mathrm{~A}}}
$$

Substitution into the PDE above yields a dimensionless equation with one parameter:

$$
\frac{\partial^{2} \mathbf{y}^{*}}{\partial \mathbf{t}^{*^{2}}}+\left(\frac{\mathbf{I}}{\mathbf{A}^{2}}\right) \frac{\partial^{4} \mathbf{y}^{*}}{\partial \mathbf{x}^{*^{4}}}=\mathbf{0} ; \quad \text { One geometric parameter: } \frac{\mathbf{I}}{\mathbf{A}^{2}} \quad \text { Ans. }
$$

We could remove ($\mathrm{I} / \mathrm{A}^{2}$) completely by redefining $\mathbf{x}^{*}=\mathbf{x} / \mathbf{I}^{1 / 4}$. Ans.
5.48 A smooth steel $(\mathrm{SG}=7.86)$ sphere is immersed in a stream of ethanol at $20^{\circ} \mathrm{C}$ moving at 1.5 m / s. Estimate its drag in N from Fig. 5.3a. What stream velocity would quadruple its drag? Take D $=2.5 \mathrm{~cm}$.

Solution: For ethanol at $20^{\circ} \mathrm{C}$, take $\rho \approx 789 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu \approx 0.0012 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Then

$$
\begin{aligned}
& \operatorname{Re}_{\mathrm{D}}=\frac{\rho \mathrm{UD}}{\mu}=\frac{789(1.5)(0.025)}{0.0012} \approx 24700 ; \text { Read Fig. 5.3(a): } \mathrm{C}_{\mathrm{D}, \text { sphere }} \approx 0.4 \\
& \begin{array}{c}
\text { Compute drag } \mathrm{F}=\mathrm{C}_{\mathrm{D}}\left(\frac{1}{2}\right) \rho \mathrm{U}^{2} \frac{\pi}{4} \mathrm{D}^{2}=(0.4)\left(\frac{1}{2}\right)(789)(1.5)^{2}\left(\frac{\pi}{4}\right)(0.025)^{2} \\
\approx \mathbf{0 . 1 7} \mathbf{N} \text { Ans. }
\end{array}
\end{aligned}
$$

Since $\mathrm{CD} \approx$ constant in this range of ReD , doubling \mathbf{U} quadruples the drag. Ans.
5.49 The sphere in Prob. 5.48 is dropped in gasoline at $20^{\circ} \mathrm{C}$. Ignoring its acceleration phase, what will its terminal (constant) fall velocity be, from Fig. 5.3a?

Solution: For gasoline at $20^{\circ} \mathrm{C}$, take $\rho \approx 680 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu \approx 2.92 \mathrm{E}-4 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. For steel take $\rho \approx$ $7800 \mathrm{~kg} / \mathrm{m}^{3}$. Then, in "terminal" velocity, the net weight equals the drag force:

$$
\begin{gathered}
\text { Net weight }=\left(\rho_{\text {steel }}-\rho_{\text {gasoline }}\right) \mathrm{g} \frac{\pi}{6} \mathrm{D}^{3}=\text { Drag force, } \\
\text { or: } \quad(7800-680)(9.81) \frac{\pi}{6}(0.025)^{3}=0.571 \mathrm{~N}=\mathrm{C}_{\mathrm{D}}\left(\frac{1}{2}\right)(680) \mathrm{U}^{2} \frac{\pi}{4}(0.025)^{2}
\end{gathered}
$$

