Solution: Given $\Delta p = \text{fcn}(\rho, V, d/D)$, then by dimensional analysis $\Delta p/(\rho V^2) = \text{fcn}(d/D)$. For water at 20°C, take $\rho = 998 \text{ kg/m}^3$. For gasoline at 20°C, take $\rho = 680 \text{ kg/m}^3$. Then, using the water 'model' data to obtain the function "fcn(d/D)", we calculate

$$\frac{\Delta p_{\rm m}}{\rho_{\rm m} V_{\rm m}^2} = \frac{5000}{(998)(4.0)^2} = 0.313 = \frac{\Delta p_{\rm p}}{\rho_{\rm p} V_{\rm p}^2} = \frac{15000}{(680)V_{\rm p}^2}, \text{ solve for } V_{\rm p} \approx 8.39 \frac{\text{m}}{\text{s}}$$

Given $Q = \frac{9}{60} \frac{\text{m}^3}{\text{s}} = V_{\rm p} A_{\rm p} = (8.39) \frac{\pi}{4} D_{\rm p}^2, \text{ solve for best } \mathbf{D}_{\rm p} \approx 0.151 \text{ m}$ Ans.

5.72 A one-fifteenth-scale model of a parachute has a drag of 450 lbf when tested at 20 ft/s in a water tunnel. If Reynolds-number effects are negligible, estimate the terminal fall velocity at 5000-ft standard altitude of a parachutist using the prototype if chute and chutist together weigh 160 lbf. Neglect the drag coefficient of the woman.

Solution: For water at 20°C, take $\rho = 1.94 \text{ kg/m}^3$. For air at 5000-ft standard altitude (Table A-6) take $\rho = 0.00205 \text{ kg/m}^3$. If Reynolds number is unimportant, then the two cases have the same drag-force coefficient:

$$C_{Dm} = \frac{F_{m}}{\rho_{m} V_{m}^{2} D_{m}^{2}} = \frac{450}{1.94(20)^{2} (D_{p}/15)^{2}} = C_{Dp} = \frac{160}{0.00205 V_{p}^{2} D_{p}^{2}},$$

solve $V_{p} \approx 24.5 \frac{ft}{s}$ Ans.

5.73 The power *P* generated by a certain windmill design depends upon its diameter *D*, the air density ρ , the wind velocity *V*, the rotation rate Ω , and the number of blades *n*. (a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm, develops 2.7 kW at sea level when V = 40 m/s and when rotating at 4800 rev/min. (b) What power will be developed by a geometrically and dynamically similar prototype, of diameter 5 m, in winds of 12 m/s at 2000 m standard altitude? (c) What is the appropriate rotation rate of the prototype?

Solution: (a) For the function $P = \text{fcn}(D, \rho, V, \Omega, n)$ the appropriate dimensions are $\{P\} = \{ML^2T^{-3}\}, \{D\} = \{L\}, \{\rho\} = \{ML^{-3}\}, \{V\} = \{L/T\}, \{\Omega\} = \{T^{-1}\}, \text{ and } \{n\} = \{1\}. \text{ Using } (D, \rho, V)$ as repeating variables, we obtain the desired dimensionless function:

$$\frac{P}{\rho D^2 V^3} = fcn\left(\frac{\Omega D}{V}, n\right) \quad Ans. (a)$$