Solution: Given $\Delta \mathrm{p}=\mathrm{fcn}(\rho, \mathrm{V}, \mathrm{d} / \mathrm{D})$, then by dimensional analysis $\Delta \mathrm{p} /\left(\rho \mathrm{V}^{2}\right)=\mathrm{fcn}(\mathrm{d} / \mathrm{D})$. For water at $20^{\circ} \mathrm{C}$, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$. For gasoline at $20^{\circ} \mathrm{C}$, take $\rho=680 \mathrm{~kg} / \mathrm{m}^{3}$. Then, using the water 'model' data to obtain the function " $\mathrm{fcn}(\mathrm{d} / \mathrm{D})$ ", we calculate

$$
\frac{\Delta \mathrm{p}_{\mathrm{m}}}{\rho_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}}^{2}}=\frac{5000}{(998)(4.0)^{2}}=0.313=\frac{\Delta \mathrm{p}_{\mathrm{p}}}{\rho_{\mathrm{p}} \mathrm{~V}_{\mathrm{p}}^{2}}=\frac{15000}{(680) \mathrm{V}_{\mathrm{p}}^{2}}, \text { solve for } \mathrm{V}_{\mathrm{p}} \approx 8.39 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Given $\mathrm{Q}=\frac{9}{60} \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=\mathrm{V}_{\mathrm{p}} \mathrm{A}_{\mathrm{p}}=(8.39) \frac{\pi}{4} \mathrm{D}_{\mathrm{p}}^{2}$, solve for best $\mathbf{D}_{\mathrm{p}} \approx \mathbf{0 . 1 5 1} \mathrm{m}$ Ans.
5.72 A one-fifteenth-scale model of a parachute has a drag of 450 lbf when tested at $20 \mathrm{ft} / \mathrm{s}$ in a water tunnel. If Reynolds-number effects are negligible, estimate the terminal fall velocity at $5000-\mathrm{ft}$ standard altitude of a parachutist using the prototype if chute and chutist together weigh 160 lbf . Neglect the drag coefficient of the woman.

Solution: For water at $20^{\circ} \mathrm{C}$, take $\rho=1.94 \mathrm{~kg} / \mathrm{m}^{3}$. For air at $5000-\mathrm{ft}$ standard altitude (Table A-6) take $\rho=0.00205 \mathrm{~kg} / \mathrm{m}^{3}$. If Reynolds number is unimportant, then the two cases have the same drag-force coefficient:

$$
\begin{gathered}
\mathrm{C}_{\mathrm{Dm}}=\frac{\mathrm{F}_{\mathrm{m}}}{\rho_{\mathrm{m}} \mathrm{~V}_{\mathrm{m}}^{2} \mathrm{D}_{\mathrm{m}}^{2}} \\
=\frac{450}{1.94(20)^{2}\left(\mathrm{D}_{\mathrm{p}} / 15\right)^{2}}=\mathrm{C}_{\mathrm{Dp}}=\frac{160}{0.00205 \mathrm{~V}_{\mathrm{p}}^{2} \mathrm{D}_{\mathrm{p}}^{2}}, \\
\text { solve } \quad \mathbf{V}_{\mathrm{p}} \approx \mathbf{2 4 . 5} \frac{\mathbf{f t}}{\mathbf{s}} \text { Ans. }
\end{gathered}
$$

5.73 The power P generated by a certain windmill design depends upon its diameter D, the air density ρ, the wind velocity V, the rotation rate Ω, and the number of blades n. (a) Write this relationship in dimensionless form. A model windmill, of diameter 50 cm , develops 2.7 kW at sea level when $V=40 \mathrm{~m} / \mathrm{s}$ and when rotating at $4800 \mathrm{rev} / \mathrm{min}$. (b) What power will be developed by a geometrically and dynamically similar prototype, of diameter 5 m , in winds of 12 m / s at 2000 m standard altitude? (c) What is the appropriate rotation rate of the prototype?

Solution: (a) For the function $P=\operatorname{fcn}(D, \rho, V, \Omega, n)$ the appropriate dimensions are $\{P\}=$ $\left\{\mathrm{ML}^{2} \mathrm{~T}^{-3}\right\},\{D\}=\{\mathrm{L}\},\{\rho\}=\left\{\mathrm{ML}^{-3}\right\},\{V\}=\{\mathrm{L} / \mathrm{T}\},\{\Omega\}=\left\{\mathrm{T}^{-1}\right\}$, and $\{n\}=\{1\}$. Using $(D, \rho$, V) as repeating variables, we obtain the desired dimensionless function:

$$
\frac{P}{\rho D^{2} V^{3}}=f c n\left(\frac{\Omega D}{V}, n\right) \text { Ans. (a) }
$$

