Solution: (a) Assume no pressure drop and neglect velocity heads. The energy equation reduces to:

$$\frac{p_1}{\rho g} + \frac{V_1^2}{2g} + z_1 = 0 + 0 + (L+l) = \frac{p_2}{\rho g} + \frac{V_2^2}{2g} + z_2 + h_f = 0 + 0 + 0 + h_f, \quad or: \quad h_f \approx L+l$$

For laminar flow, $h_f = \frac{128\mu LQ}{4}$ and, for uniform draining, $Q = \frac{\upsilon}{2}$

For laminar flow,
$$h_f = \frac{128\mu LQ}{\pi\rho g d^4}$$
 and, for uniform draining, $Q = \frac{D}{\Delta t}$

Solve for
$$\Delta t = \frac{128\mu Lv}{\pi\rho g d^4 (L+l)}$$
 Ans. (a)

(b) Apply to $\Delta t = 6$ s. For water, take $\rho = 998$ kg/m³ and $\mu = 0.001$ kg/m·s. Formula (a) predicts:

$$\Delta t = 6 \ s = \frac{128(0.001 \ kg/m \cdot s)(0.12 \ m)(8E - 6 \ m^3)}{\pi (998 \ kg/m^3)(9.81 \ m/s^2)d^4(0.12 + 0.02 \ m)}$$

Solve for **d ≈ 0.0015 m** Ans. (b)

6.18 To determine the viscosity of a liquid of specific gravity 0.95, you fill, to a depth of 12 cm, a large container which drains through a 30-cm-long vertical tube attached to the bottom. The tube diameter is 2 mm, and the rate of draining is found to be 1.9 cm^3 /s. What is your estimate of the fluid viscosity? Is the tube flow laminar?

Solution: The known flow rate and diameter enable us to find the velocity in the tube:

$$V = \frac{Q}{A} = \frac{1.9E - 6\ m^3/s}{\left(\pi/4\right)\left(0.002\ m\right)^2} = 0.605\ \frac{m}{s}$$

Evaluate $\rho_{\text{liquid}} = 0.95(998) = 948 \text{ kg/m}^3$. Write the energy equation between the top surface and the tube exit:

$$\frac{p_{af}}{\rho g} = \frac{V_{top}^2}{2g} + z_{top} = \frac{p_{a}}{\rho g} + \frac{V^2}{2g} + 0 + h_f,$$

or: $0.42 = \frac{V^2}{2g} + \frac{32\mu LV}{\rho g d^2} = \frac{(0.605)^2}{2(9.81)} + \frac{32\mu (0.3)(0.605)}{948(9.81)(0.002)^2}$