Solution: (a) Assume no pressure drop and neglect velocity heads. The energy equation reduces to:

$$
\frac{p_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+z_{1}=0+0+(L+l)=\frac{p_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{f}=0+0+0+h_{f}, \quad \text { or: } \quad h_{f} \approx L+l
$$

For laminar flow, $h_{f}=\frac{128 \mu L Q}{\pi \rho g d^{4}}$ and, for uniform draining, $Q=\frac{v}{\Delta t}$

$$
\text { Solve for } \quad \Delta t=\frac{128 \mu L v}{\pi \rho g d^{4}(L+l)} \quad \text { Ans. (a) }
$$

(b) Apply to $\Delta t=6 \mathrm{~s}$. For water, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Formula (a) predicts:

$$
\Delta t=6 s=\frac{128(0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s})(0.12 \mathrm{~m})\left(8 E-6 \mathrm{~m}^{3}\right)}{\pi\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) d^{4}(0.12+0.02 \mathrm{~m})}
$$

Solve for $\mathbf{d} \approx \mathbf{0 . 0 0 1 5} \mathbf{m} \quad$ Ans. (b)
6.18 To determine the viscosity of a liquid of specific gravity 0.95 , you fill, to a depth of 12 cm , a large container which drains through a $30-\mathrm{cm}$-long vertical tube attached to the bottom. The tube diameter is 2 mm , and the rate of draining is found to be $1.9 \mathrm{~cm}^{3} / \mathrm{s}$. What is your estimate of the fluid viscosity? Is the tube flow laminar?

Fig. P6.18

Solution: The known flow rate and diameter enable us to find the velocity in the tube:

$$
V=\frac{Q}{A}=\frac{1.9 E-6 \mathrm{~m}^{3} / \mathrm{s}}{(\pi / 4)(0.002 \mathrm{~m})^{2}}=0.605 \frac{\mathrm{~m}}{\mathrm{~s}}
$$

Evaluate ρ liquid $=0.95(998)=948 \mathrm{~kg} / \mathrm{m}^{3}$. Write the energy equation between the top surface and the tube exit:

$$
\begin{gathered}
\frac{p_{a} f}{\rho f}=\frac{V_{\text {tof }}^{2}}{2 \beta}+z_{\text {top }}=\frac{p \hat{p}_{a}}{p g}+\frac{V^{2}}{2 g}+0+h_{f}, \\
\text { or: } \quad 0.42=\frac{V^{2}}{2 g}+\frac{32 \mu L V}{\rho g d^{2}}=\frac{(0.605)^{2}}{2(9.81)}+\frac{32 \mu(0.3)(0.605)}{948(9.81)(0.002)^{2}}
\end{gathered}
$$

