Thus $\mathrm{h}_{\mathrm{f}}=\mathrm{z}_{1}-\mathrm{z}_{2}>0$ by definition. Therefore, flow is down. Ans.
While flowing down, the pressure drop due to friction exactly balances the pressure rise due to gravity. Assuming laminar flow and noting that $\Delta \mathrm{z}=\mathrm{L}$, the pipe length, we get

$$
\begin{gathered}
\mathrm{h}_{\mathrm{f}}=\frac{128 \mu \mathrm{LQ}}{\pi \rho \mathrm{gd}^{4}}=\Delta \mathrm{z}=\mathrm{L}, \\
\text { or: } \mathrm{Q}=\frac{\pi(8.70)(9.81)(0.025)^{4}}{128(0.104)}=7.87 \mathrm{E}-4 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=\mathbf{2 . 8 3} \frac{\mathbf{m}^{3}}{\mathbf{h}} \quad \text { Ans. }
\end{gathered}
$$

6.24 Two tanks of water at $20^{\circ} \mathrm{C}$ are connected by a capillary tube 4 mm in diameter and 3.5 m long. The surface of tank 1 is 30 cm higher than the surface of tank 2 . (a) Estimate the flow rate in $\mathrm{m}^{3} / \mathrm{h}$. Is the flow laminar? (b) For what tube diameter will $\operatorname{Re} d$ be 500 ?
Solution: For water, take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. (a) Both tank surfaces are at atmospheric pressure and have negligible velocity. The energy equation, when neglecting minor losses, reduces to:

$$
\begin{gathered}
\Delta z=0.3 m=h_{f}=\frac{128 \mu L Q}{\pi \rho g d^{4}}=\frac{128(0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s})(3.5 \mathrm{~m}) Q}{\pi\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(0.004 \mathrm{~m})^{4}} \\
\text { Solve for } Q=5.3 E-6 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=\mathbf{0 . 0 1 9} \frac{\mathbf{m}^{3}}{\mathbf{h}} \quad \text { Ans. (a) } \\
\text { Check } \left.\quad \operatorname{Re}_{\mathrm{d}}=4 \rho Q /(\pi \mu d)=4(998)(5.3 \mathrm{E}-6) / \pi(0.001)(0.004)\right] \\
\operatorname{Re}_{\mathbf{d}}=\mathbf{1 6 7 5} \text { laminar. Ans. (a) }
\end{gathered}
$$

(b) If $\operatorname{Red}=500=4 \rho Q /(\pi \mu d)$ and $\Delta z=h \mathrm{f}$, we can solve for both Q and d :

$$
\begin{gathered}
\operatorname{Re}_{d}=500=\frac{4\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right) Q}{\pi(0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}) \mathrm{d}}, \quad \text { or } \quad Q=0.000394 \mathrm{~d} \\
h_{f}=0.3 \mathrm{~m}=\frac{128(0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s})(3.5 \mathrm{~m}) Q}{\pi\left(998 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right) d^{4}}, \quad \text { or } \quad Q=20600 \mathrm{~d}^{4}
\end{gathered}
$$

Combine these two to solve for $Q=1.05 E-6 \mathrm{~m}^{3} / \mathrm{s}$ and $\mathbf{d}=\mathbf{2 . 6 7} \mathbf{m m}$ Ans. (b)

