6.5 In flow past a body or wall, early transition to turbulence can be induced by placing a trip wire on the wall across the flow, as in Fig. P6.5. If the trip wire in Fig. P6.5 is placed where the local velocity is U, it will trigger turbulence if $U d / \nu=850$, where d is the wire diameter [Ref. 3 of Ch. 6]. If the sphere diameter is 20 cm and transition is observed at $\operatorname{Re} D=90,000$, what is the

Fig. P6.5 diameter of the trip wire in mm ?

Solution: For the same U and v,

$$
\begin{aligned}
& \operatorname{Re}_{d}=\frac{U d}{v}=850 ; \quad \operatorname{Re}_{D}=\frac{U D}{v}=90000 \\
& \text { or } \quad d=D \frac{\operatorname{Re}_{d}}{\operatorname{Re}_{D}}=(200 \mathrm{~mm})\left(\frac{850}{90000}\right) \approx \mathbf{1 . 9} \mathbf{~ m m}
\end{aligned}
$$

P6.6 For flow of a uniform stream parallel to a sharp flat plate, transition to a turbulent boundary layer on the plate may occur at $\mathrm{Re}_{x}=\rho U x / \mu \approx 1 \mathrm{E} 6$, where U is the approach velocity and x is distance along the plate. If $U=2.5 \mathrm{~m} / \mathrm{s}$, determine the distance x for the following fluids at $20^{\circ} \mathrm{C}$ and 1 atm : (a) hydrogen; (b) air; (c) gasoline; (d) water; (e) mercury; and (f) glycerin.

Solution: We are to calculate $x=\left(\operatorname{Re}_{x}\right)(\mu) /(\rho U)=(1 \mathrm{E} 6)(\mu) /[\rho(2.5 \mathrm{~m} / \mathrm{s})]$. Make a table:

FLUID	$\rho-\mathrm{kg} / \mathrm{m}^{3}$	$\mu-\mathrm{kg} / \mathrm{m}-\mathrm{s}$	$x-$ meters
Hydrogen	0.00839	$9.05 \mathrm{E}-5$	43.
Air	1.205	$1.80 \mathrm{E}-5$	6.0
Gasoline	680	$2.92 \mathrm{E}-4$	0.17
Water	998	0.0010	0.40

Mercury	13,550	$1.56 \mathrm{E}-3$	0.046
Glycerin	1260	1.49	470.

Clearly there are vast differences between fluid properties and their effects on flows.
6.7 Cola, approximated as pure water at $20^{\circ} \mathrm{C}$, is to fill an $8-\mathrm{oz}$ container (1 U.S. gal $=$ 128 fl oz) through a $5-\mathrm{mm}$-diameter tube. Estimate the minimum filling time if the tube flow is to remain laminar. For what cola (water) temperature would this minimum time be 1 min ?

Solution: For cola "water", take $\rho=998 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. Convert 8 fluid ounces $=(8 / 128)\left(231 \mathrm{in}^{3}\right) \approx 2.37 \mathrm{E}-4 \mathrm{~m}^{3}$. Then, if we assume transition at $\mathrm{Re}=2300$,

$$
\operatorname{Re}_{\text {crit }}=2300=\frac{\rho \mathrm{VD}}{\mu}=\frac{4 \rho \mathrm{Q}}{\pi \mu \mathrm{D}}, \quad \text { or: } \quad \mathrm{Q}_{\text {crit }}=\frac{2300 \pi(0.001)(0.005)}{4(998)} \approx 9.05 \mathrm{E}-6 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}
$$

Then $\Delta \mathrm{t}$ fill $=v / \mathrm{Q}=2.37 \mathrm{E}-4 / 9.05 \mathrm{E}-6 \approx \mathbf{2 6} \mathbf{s}$ Ans. (a)
(b) We fill in exactly one minute if $\mathrm{Q}_{\text {crit }}=2.37 \mathrm{E}-4 / 60=3.94 \mathrm{E}-6 \mathrm{~m}^{3} / \mathrm{s}$. Then

$$
\mathrm{Q}_{\text {crit }}=3.94 \mathrm{E}-6 \frac{\mathrm{~m}^{3}}{\mathrm{~s}}=\frac{2300 \pi \nu \mathrm{D}}{4} \text { if } v_{\text {water }} \approx 4.36 \mathrm{E}-7 \mathrm{~m}^{2} / \mathrm{s}
$$

From Table A-1, this kinematic viscosity occurs at $\mathbf{T} \approx \mathbf{6 6}^{\circ} \mathbf{C}$ Ans. (b)
6.8 When water at $20^{\circ} \mathrm{C}\left(\rho=998 \mathrm{~kg} / \mathrm{m}^{3}, \mu=0.001 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}\right)$ flows through an $8-\mathrm{cm}$ diameter pipe, the wall shear stress is 72 Pa . What is the axial pressure gradient ($\partial \mathrm{p} / \partial \mathrm{x})$ if the pipe is (a) horizontal; and (b) vertical with the flow u ?
Solution: Equation (6.9b) applies in both cases, noting that τ_{w} is negative:
(a) Horizontal: $\frac{d p}{d x}=\frac{2 \tau_{w}}{R}=\frac{2(-72 \mathrm{~Pa})}{0.04 \mathrm{~m}}=-\mathbf{3 6 0 0} \frac{\mathbf{P a}}{\mathbf{m}} \quad$ Ans. (a)
(b) Vertical, up: $\frac{d p}{d x}=\frac{2 \tau_{w}}{R}-\rho g \frac{d z \tau^{1}}{d x}=-3600-998(9.81)=-\mathbf{1 3}, \mathbf{4 0 0} \frac{\mathbf{P a}}{\mathbf{m}} \quad$ Ans. (b)

