For sheet steel, take $\varepsilon \approx 0.00015 \mathrm{ft}$, hence $\varepsilon / \mathrm{Dh} \approx 0.000346$. Now relate everything to the input power:

$$
\begin{gathered}
\text { Power }=1 \mathrm{hp}=550 \frac{\mathrm{ft} \cdot \mathrm{lbf}}{\mathrm{~s}}=\rho \mathrm{gQh}_{\mathrm{f}}=(0.00234)(32.2) \mathrm{Q}\left[54.4 \mathrm{fQ}^{2}\right], \\
\text { or: } \mathrm{fQ}^{3} \approx 134 \text { with } \mathrm{Q} \text { in } \mathrm{ft}^{3} / \mathrm{s}
\end{gathered}
$$

Guess $\mathrm{f} \approx 0.02, \quad \mathrm{Q}=(134 / 0.02)^{1 / 3} \approx 18.9 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}, \quad \mathrm{Re}=\frac{\rho(\mathrm{Q} / \mathrm{A}) \mathrm{D}_{\mathrm{h}}}{\mu} \approx 209000$
Iterate: $\mathrm{fbetter} \approx 0.0179$, Qbetter $\approx 19.6 \mathrm{ft}^{3} / \mathrm{s}$, Rebetter ≈ 216500. The process converges to

$$
\mathrm{f} \approx 0.01784, \mathrm{~V} \approx 80.4 \mathrm{ft} / \mathrm{s}, \mathbf{Q} \approx 19.6 \mathbf{f t}^{\mathbf{3}} / \mathbf{s} . \quad \text { Ans }
$$

6.91 Heat exchangers often consist of many triangular passages. Typical is Fig. P6.91, with $L=60 \mathrm{~cm}$ and an isoscelestriangle cross section of side length $a=$ 2 cm and included angle $\beta=80^{\circ}$. If the average velocity is $V=2 \mathrm{~m} / \mathrm{s}$ and the fluid is SAE 10 oil at $20^{\circ} \mathrm{C}$, estimate the pressure drop.

Fig. P6.91

Solution: For SAE 10 oil, take $\rho=870 \mathrm{~kg} / \mathrm{m}^{3}$ and $\mu=0.104 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}$. The Reynolds number based on side length a is $\operatorname{Re}=\rho \mathrm{Va} / \mu \approx \mathbf{3 3 5}$, so the flow is laminar. The bottom side of the triangle is $2(2 \mathrm{~cm}) \sin 40^{\circ} \approx 2.57 \mathrm{~cm}$. Calculate hydraulic diameter:

$$
\begin{aligned}
A & =\frac{1}{2}(2.57)\left(2 \cos 40^{\circ}\right) \approx 1.97 \mathrm{~cm}^{2} ; \quad \mathrm{P}=6.57 \mathrm{~cm} ; \quad \mathrm{D}_{\mathrm{h}}=\frac{4 \mathrm{~A}}{\mathrm{P}} \approx 1.20 \mathrm{~cm} \\
\mathrm{Re}_{\mathrm{D}_{\mathrm{h}}}=\frac{\rho \mathrm{VD}_{\mathrm{h}}}{\mu}=\frac{870(2.0)(0.0120)}{0.104} & \approx 201 ; \quad \text { from Table } 6.4, \theta=40^{\circ}, \quad \mathrm{fRe} \approx 52.9 \\
\text { Then } \mathrm{f}=\frac{52.9}{201} \approx 0.263, \quad \Delta \mathrm{p} & =\mathrm{f} \frac{\mathrm{~L}}{\mathrm{D}_{\mathrm{h}}} \frac{\rho}{2} \mathrm{~V}^{2}=(0.263)\left(\frac{0.6}{0.012}\right)\left(\frac{870}{2}\right)(2)^{2} \\
& \approx \mathbf{2 3 0 0 0} \mathbf{P a} \text { Ans. }
\end{aligned}
$$

