
ENSC 283 Week # 2, Tutorial # 1– Dimensionless Quantities

Problem 1: A dimensionless combination of variables that is important in the study of viscous flow through pipes is called the *Reynolds number*, Re, defined as $\rho VD/\mu$ where, as indicated in the figure, ρ is the fluid density, V the mean fluid velocity, D the pipe diameter, and μ the fluid viscosity. A Newtonian fluid having a viscosity of 0.38 $N. s/m^2$ and a specific gravity of 0.91

flows through a 25-mm-diameter pipe with a velocity of $2.6 \, m/s$. Determine the value of the Reynolds number using (a) SI units, and (b) BG units.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- Reynolds number, Re, in SI and BG units

Step 2: Prepare a data table

Data	Value	Unit
V	2.6	m/s
D	25	mm
μ	0.38	$N.s/m^2$
SG	0.91	-

Step 3: State your assumptions (you may have to add to your list of assumptions as you proceed in the problem)

Assumptions:

1) Water is considered as a Newtonian fluid.

Step 4: Calculations

(a) SI Units

The fluid density is calculated from the specific gravity as

$$\rho = SG \ \rho_{H_20@4^{\circ}C} = 0.91 \ \left(1000 \frac{kg}{m^3}\right) = 910 \ kg/m^3$$
 (Eq1)

From the definition of the Reynolds number,

$$Re = \frac{\rho VD}{\mu} = \frac{\left(910 \frac{kg}{m^3}\right) \left(2.6 \frac{m}{s}\right) (25 mm) (10^{-3} \frac{mm}{m})}{0.38 N. s/m^2}$$
$$= 156 (kg. \frac{m}{s^2})/N$$
 (Eq2)

However, since $1N = 1 kg.m/s^2$ it follows that the Reynolds number is unitless, therefore

$$Re = 156 (Eq3)$$

(b)BG Units

We first convert all the SI values of the variables appearing in the Reynolds number to BG values by using the conversion factors.

Since 1kW = 1kJ/s, then the maximum electrical power generation per year become

$$\rho = \left(910 \frac{kg}{m^3}\right) \left(1.940 \times 10^{-3} \frac{\frac{slugs}{ft^3}}{\frac{kg}{m^3}}\right) = 1.77 \ slugs/ft^3$$
 (Eq4)

$$V = \left(2.6 \, \frac{m}{s}\right) \left(3.281 \frac{ft}{m}\right) = 8.53 \, ft/s \tag{Eq5}$$

M. Bahrami ENSC 283 Tutorial # 1 2

$$D = (0.025 m) \left(3.281 \frac{ft}{m} \right) = 8.20 \times 10^{-2} ft$$
 (Eq6)

$$\mu = (0.38 \, N. \, s/m^2) \left(2.089 \frac{lb. \, s/ft^2}{N. \, s/m^2} \right) = 7.94 \times 10^{-3} \, lb. \, s/ft^2$$
 (Eq7)

Using the definition of the Reynolds number, we get

$$Re = \frac{\rho VD}{\mu} = \frac{\left(1.77 \frac{slugs}{ft^3}\right) \left(8.53 \frac{ft}{s}\right) (8.20 \times 10^{-2} ft)}{7.94 \times 10^{-3} lb. s/ft^2} = 156$$
 (Eq8)

Step 5: Concluding Statement

The value of any dimensionless quantity does not depend on the system of units used if all variables that make up the quantity are expressed in a consistent set of units.

M. Bahrami ENSC 283 Tutorial # 1 3