ENSC 388

Assignment \#1 (Basic Concepts)

Assignment date: Wednesday Sept. 16, 2009
Due date: Wednesday Sept. 23, 2009

Problem 1: (Static Pressure)

Both a gage and a manometer are attached to a gas tank to measure its pressure. If the reading on the pressure gage is 80 kPa , determine the distance between the two fluid levels of the manometer if the fluid is (a) mercury ($\rho=13,600 \mathrm{~kg} / \mathrm{m}^{3}$) or (b) water ($\rho=1000 \mathrm{~kg} / \mathrm{m}^{3}$).

Problem 2: (Buoyancy)
Balloons are often filled with helium gas because it weighs only about one-seventh of what air weighs under identical conditions. The buoyancy force which can be expressed as $F_{B}=\rho_{\text {air }} V_{\text {balloon }}$ will push the balloon upward. If the balloon has diameter of 10 m and carries two people, 70 kg each, determine (a) the acceleration of the balloon when it is first released and (b) the maximum amount of load, in kg ,
the balloon can carry. Assume the density of air is $\rho=1.16 \mathrm{~kg} / \mathrm{m}^{3}$, and neglect the weight of the ropes and the cage. (Answers: $16.5 \mathrm{~m} / \mathrm{s}^{2}, 520.6 \mathrm{~kg}$)

$\mathrm{m}=140 \mathrm{~kg}$
Problem 3: (Hydrostatic pressure)
The lower half of a $10-\mathrm{m}$-high cylindrical container is filled with water ($\rho=1000$ $\mathrm{kg} / \mathrm{m}^{3}$) and the upper half with oil that has a specific gravity of 0.85 . Determine the pressure difference between the top and bottom of the cylinder. (Answer: 90.7 kPa)

Problem 1:

$\mathrm{P}_{\mathrm{g}}=80 \mathrm{kPa}$

Find \mathbf{h} if:

a) Fluid is mercury $\left(\rho_{\mathrm{Hg}}=13,600 \mathrm{~kg} / \mathrm{m}^{3}\right)$
b) Fluid is mercury ($\rho_{\mathrm{H} 2 \mathrm{O}}=1000 \mathrm{~kg} / \mathrm{m}^{3}$)

- Assumption:

The pressure is uniform in the tank, thus we can determine the pressure at the gage port.

- Analysis

Starting with P_{g} (gas pressure) and moving along the tube from point (1) by adding (as we go down) or subtracting (as we go up), the ρ gh term(s) until we reach point (2), therefore;

$$
P_{g}-\rho g h=P_{2}
$$

Since tube at point (2) is open to atmosphere, $P_{2}=p_{\text {atm }}$.

$$
\begin{gathered}
\underbrace{P_{g}-P_{2}}_{\mathrm{P}_{\text {gage }}(\text { What we read on the pressure gage })}=\rho g h \\
80 \mathrm{kPa}=\mathrm{\rho gh} \square \\
\begin{array}{r}
\mathrm{H}_{2} \mathrm{O} \rightarrow 80 \times 10^{3}[\mathrm{~Pa}]=1000\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \times 9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right] \mathrm{h}_{\mathrm{H}_{2} \mathrm{O}} \\
\Rightarrow h_{\mathrm{H}_{2} \mathrm{O}}=8.155[\mathrm{~m}] \\
H g \rightarrow 80 \times 10^{3}[\mathrm{~Pa}]=13,600\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \times 9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right] \mathrm{h}_{\mathrm{Hg}} \\
\Rightarrow h_{H_{2} \mathrm{O}}=0.599[\mathrm{~m}]
\end{array}
\end{gathered}
$$

Problem 2:

$\mathrm{D}=10 \mathrm{~m}$

$$
\rho_{\mathrm{He}}=\rho_{\text {air }} / 7 \text { and } \quad \rho_{\text {air }}=1.16 \mathrm{~kg} / \mathrm{m}^{3}
$$

$\mathrm{m}_{\text {people }}=140 \mathrm{~kg}$

Assumption:

The wight of the ropes and cage is neglected.

Analysis:

Starting with free body diagram. We also know that te buoyancy force is:

$$
\begin{gathered}
F_{B}=\rho_{\text {air }} g V_{\text {balloon }} \\
W=m_{\text {total }} g \\
m_{\text {total }}=m_{\text {people }}+m_{H e} \\
m_{H e}=\rho_{\text {He }} V_{\text {balloon }} \\
V_{\text {balloon }}=\frac{4}{3} \pi R_{\text {balloon }}^{3} \\
V_{\text {balloon }}=\frac{4}{3} \pi(5[\mathrm{~m}])^{3}=523.59\left[\mathrm{~m}^{3}\right] \\
m_{H e}=\frac{1}{7} \times 1.16\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \times 523.59\left[\mathrm{~m}^{3}\right]=86.77 \\
m_{\text {total }}=m_{H e}+m_{\text {people }}=86.77[\mathrm{~kg}]+140[\mathrm{~kg}]=226.77[\mathrm{~kg}]
\end{gathered}
$$

Newton law:

$$
\sum F=m_{t o t a l} \times a
$$

Therefore:

$$
\begin{align*}
& F_{B}-W=m_{\text {total }} \times a \tag{1}\\
& \rho_{\text {air }} g V_{\text {balloon }}-m_{\text {total }} g=m_{\text {total }} a
\end{align*}
$$

So,

$$
\begin{equation*}
a=\frac{\rho_{\text {air }} V_{\text {balloon }}-m_{\text {total }}}{m_{\text {total }}} g \tag{2}
\end{equation*}
$$

Substituting values in Eq. (2),

$$
\begin{gathered}
a=\frac{1.16\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \times 523.59\left[\mathrm{~m}^{3}\right]-226.77[\mathrm{~kg}]}{226.77[\mathrm{~kg}]} \times 9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right] \\
\longleftrightarrow a=16.46\left[\mathrm{~m} / \mathrm{s}^{2}\right]
\end{gathered}
$$

The maximum amount of load that the balloon can carry can be calculated from;

$$
\sum F=0
$$

Using Eq. (1),

$$
\begin{gathered}
F_{B}=W \\
\rho_{\text {air }} g V_{\text {balloon }}=m_{\max g} g \\
m_{\max }=\rho_{\text {air }} V_{\text {balloon }}=1.16\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \times 523.59\left[\mathrm{~m}^{3}\right]=607.304
\end{gathered}
$$

This mass is including the mass of helium gas in the balloon. To calculate maximum load, mass of helium must subtracted from the maximum mass so,

$$
m_{\max , \text { Load }}=m_{\max }-m_{h e}=607.304[\mathrm{~kg}]-86.77[\mathrm{~kg}]=520.6[\mathrm{~kg}]
$$

Problem 3:

$\rho_{\text {oil }} / \rho_{H_{2} \mathrm{O}}=0.85$

Analysis:

Starting with point (1) and adding terms $\square \mathrm{gh}$ as we go down,
$P_{1}+\rho_{\text {oil }} g h_{\text {oil }}+\rho_{H_{2} o} g h_{H_{2} \mathrm{O}}=P_{2}$
$\rho_{\text {oil }} g h_{\text {oil }}+\rho_{H_{2} o} g h_{H_{2} \mathrm{O}}=P_{2}-P_{1}$

$P_{2}-P_{1}=\left(\rho_{o i l} / \rho_{H_{2} \mathrm{o}} h_{o i l}+h_{H_{2} \mathrm{o}}\right) \rho_{\mathrm{H}_{2} \mathrm{o}} g$
Substituting values,

$$
\begin{aligned}
& \rho_{\mathrm{H}_{2} \mathrm{o}}=1000\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \\
& P_{2}-P_{1}=(0.85[-] \times 5[\mathrm{~m}]+5[\mathrm{~m}]) 1000\left[\mathrm{~kg} / \mathrm{m}^{3}\right] \times 9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right] \\
& \quad=90.742[\mathrm{kPa}]
\end{aligned}
$$

Notes (1): Always substitute the numerical value at the last step.
Note (2): Write all the dimensions in your solution; check both sides of relationships for unit and dimension homogeneity.

