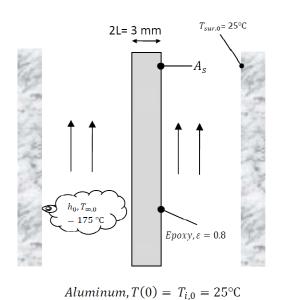
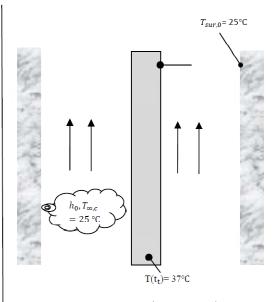
ENSC 388


Assignment #8

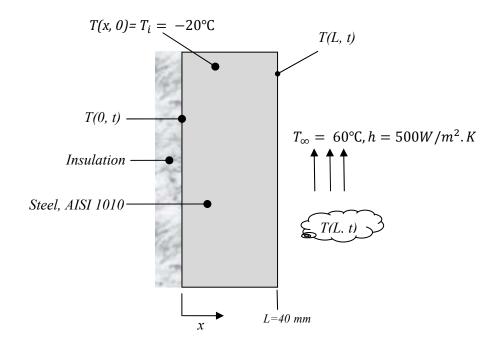
Assignment date: Wednesday Nov. 18, 2009


Due date: Wednesday Nov. 25, 2009

Problem 1

A 3-mm-thick panel of aluminum alloy ($k = 177 \text{ W/m} \cdot \text{K}$, $c = 875 \text{ J/kg} \cdot \text{K}$, and $\rho =$ 2770 kg/m³) is finished on both sides with an epoxy coating that must be cured at or above $T_c = l50$ °C for at least 5 min. The production line for the curing operation involves two steps: (1) heating in a large oven with air at $T_{\infty,0} = 175$ °C and a convection coefficient of $h_0 = 40 \text{ W/m}^2 \cdot \text{K}$, and (2) cooling in a large chamber with air a $T_{\infty,c} = 25^{\circ}C$ and a convection coefficient of $h_c = 10 \ W/m^2 \cdot K$. The heating portion of the process is conducted over a time interval t_e , which exceeds the time t_c required to reach $l50^{\circ}C$ by 5 min ($t_e = t_c + 300$ s). The coating has an emissivity of $\varepsilon = 0.8$, and the temperatures of the oven and chamber walls are 175°C and 25°C, respectively. If the panel is placed in the oven at an initial temperature of 25°C and removed from the chamber at a safe-to-touch temperature of 37°C, what is the total elapsed time for the two-step curing operation?

Step 1: Heating $(0 \le t \le t_c)$



Step 2: Cooling $(t_c < t \le t_t)$

Problem 2

Consider a steel pipeline (AISI 1010) that is 1 m in diameter and has a wall thickness of 40 mm. The pipe is heavily insulated on the outside, and before the initiation of flow, the walls of the pipe are at a uniform temperature of $-20^{\circ}C$. With the initiation of flow, hot oil at $60^{\circ}C$ is pumped through the pipe, creating a convective surface condition corresponding to $h = 500 \ W/m^2 \cdot K$ at the inner surface of the pipe.

- 1. What are the appropriate Biot and Fourier numbers 8 min after the initiation of flow?
- 2. At t = 8 min, what is the temperature of the exterior pipe surface covered by the insulation?
- 3. What is the heat flux $q''(W/m^2)$ to the pipe from the oil at t = 8 min?
- 4. How much energy per meter of pipe length has been transferred from the oil to the pipe at t = 8 min?

M. Bahrami ENSC 388 Assignment # 8 2