ENSC 388 Quiz #2

Oct. 7, 2009

Name: Student ID:

Time: 45 minutes or less. Develop answers on available place. The quiz has 5% (bonus) of the total mark. Closed books & closed notes.

Problem 1 (50%):

A thin silicon chip and an 8-mm-thick aluminum substrate are separated by a 0.02-mm thick epoxy joint. The chip and substrate are each 10 mm on a side, and their exposed surfaces are cooled by air, which is at a temperature of 25° C and provides a convection coefficient of $100 \ W/m^2 \cdot K$. If the chip dissipates $10^4 \ W/m^2$ under normal conditions, will it operate below a maximum allowable temperature of 85° C?

Note: the thermal resistant at the interface between the silicon chip and the aluminum plate with 0.02-mm epoxy is: $R_{t,c} = 0.9 \times 10^{-4} \ m^2 K/W$

Pure aluminum ($T \sim 350 \text{ K}$): $k = 239 \text{ W/m} \cdot \text{K}$

Problem 2 (50%):

Consider a $0.6m \times 0.6m$ thin square plate in a room at 30° C. One side of the plate is maintained at a temperature of 90° C, while the other side is insulated. Determine the rate of heat transfer by natural convection from the plate if the plate is: a) vertical, b) horizontal with hot surface up, and c) horizontal with hot surface facing down.

Use the following properties for air at the film temperature:

$$k = 0.02808 \text{ W/mK}$$
, Pr = 0.7202, and $v = 1.896 \times 10^{-5} \text{ m}^2/\text{s}$.

Also:

$$Ra_L = \frac{g\beta(T_s - T_{\infty})L^3}{v^2} \Pr$$

Problem 1:

Known:

Dimensions, heat dissipation, and maximum allowable temperature of a silicon chip. Thickness of aluminum substrate and epoxy joint. Convection conditions at exposed chip and substrate surfaces.

Find:

- Whether maximum allowable temperature is exceeded.

Assumptions:

- 1. Steady-state conditions.
- 2. One-dimensional conduction (negligible heat transfer from sides of composite).
- 3. Negligible chip thermal resistance (an isothermal chip).
- 4. Constant properties.
- 5. Negligible radiation exchange with surroundings.

Properties:

Pure aluminum ($T \sim 350 \text{ K}$): $k = 239 \text{ W/m} \cdot \text{K}$ (Table A-24).

Analysis:

Heat dissipated in the chip is transferred to the air directly from the exposed surface and indirectly through the joint and substrate. Performing an energy balance on a control surface about the chip, it follows that, on the basis of a unit surface area,

$$q_{c}^{"} = q_{1}^{"} + q_{2}^{"}$$

Or

$$q_c'' = \frac{T_c - T_\infty}{(1/h)} + \frac{T_c - T_\infty}{R_{t,c}^{"} + (L/k) + (1/h)}$$

To conservatively estimate Tc, the maximum possible value of $R_{t,c}^{"} = 0.9 \times 10^{-4}$ m² • K/W is obtained from Table. Hence

$$T_c = T_{\infty+} q_c'' \left[h + \frac{1}{R_{t,c}'' + (L/k) + (1/h)} \right]^{-1}$$

Or

$$T_c = 25^{\circ}\text{C} + \frac{10^4 W}{m^2} \times \left[100 + \frac{1}{(0.9 + 0.34 + 100) \times 10^{-4}}\right]^{-1} m^2. K/W$$

$$T_c = 25^{\circ}\text{C} + 50.3^{\circ}\text{C} = 75.3^{\circ}\text{C}$$

Hence the chip will operate below its maximum allowable temperature.

M. Bahrami ENSC 388 (F 09) Quiz #2

