10-151 An ice chest made of $10-\mathrm{cm}$ thick styrofoam is initially filled with 45 kg of ice at $0^{\circ} \mathrm{C}$. The length of time it will take for the ice in the chest to melt completely is to be determined.
Assumptions 1 Heat transfer is steady since the specified thermal conditions at the boundaries do not change with time. 2 Heat transfer is one-dimensional. $\mathbf{3}$ Thermal conductivity is constant. 4 The inner surface temperature of the ice chest can be taken to be $0^{\circ} \mathrm{C}$ at all times. 5 Heat transfer from the base of the ice chest is negligible.
Properties The thermal conductivity of styrofoam is given to be $k=0.033 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}$. The heat of fusion of water at 1 atm is $h_{i f}=333.7 \mathrm{~kJ} / \mathrm{kg}$.

Analysis Disregarding any heat loss through the bottom of the ice chest, the total thermal resistance
 and the heat transfer rate are determined to be

$$
\begin{aligned}
A_{i} & =2(0.3-0.03)(0.4-0.06)+2(0.3-0.03)(0.5-0.06)+(0.4-0.06)(0.5-0.06)=0.5708 \mathrm{~m}^{2} \\
A_{o} & =2(0.3)(0.4)+2(0.3)(0.5)+(0.4)(0.5)=0.74 \mathrm{~m}^{2} \\
R_{\text {chest }} & =\frac{L}{k A_{i}}=\frac{0.03 \mathrm{~m}}{\left(0.033 \mathrm{~W} / \mathrm{m} .{ }^{\circ} \mathrm{C}\right)\left(0.5708 \mathrm{~m}^{2}\right)}=1.5927^{\circ} \mathrm{C} / \mathrm{W} \\
R_{\text {conv }}= & \frac{1}{h A_{o}}=\frac{1}{\left(18 \mathrm{~W} / \mathrm{m}^{2} .{ }^{\circ} \mathrm{C}\right)\left(0.74 \mathrm{~m}^{2}\right)}=0.07508^{\circ} \mathrm{C} / \mathrm{W} \\
R_{\text {total }}= & R_{\text {chest }}+R_{\text {conv }}=1.5927+0.07508=1.6678^{\circ} \mathrm{C} / \mathrm{W} \\
& \dot{Q}=\frac{T_{s}-T_{\infty}}{R_{\text {total }}}=\frac{(28-0)^{\circ} \mathrm{C}}{1.6678^{\circ} \mathrm{C} / \mathrm{W}}=16.79 \mathrm{~W}
\end{aligned}
$$

The total amount of heat necessary to melt the ice completely is

$$
Q=m h_{i f}=(50 \mathrm{~kg})(333.7 \mathrm{~kJ} / \mathrm{kg})=16,685 \mathrm{~kJ}
$$

Then the time period to transfer this much heat to the cooler to melt the ice completely becomes

$$
\Delta t=\frac{Q}{\dot{Q}}=\frac{16,685,000 \mathrm{~J}}{16.79 \mathrm{~J} / \mathrm{s}}=9.937 \times 10^{5} \mathrm{~s}=276 \mathrm{~h}=11.5 \text { days }
$$

