11-22 An iron whose base plate is made of an aluminum alloy is turned on. The time for the plate temperature to reach 140°C and whether it is realistic to assume the plate temperature to be uniform at all times are to be determined.

Assumptions 1 85 percent of the heat generated in the resistance wires is transferred to the plate. 2 The thermal properties of the plate are constant. 3 The heat transfer coefficient is constant and uniform over the entire surface.

Properties The density, specific heat, and thermal diffusivity of the aluminum alloy plate are given to be $\rho = 2770 \text{ kg/m}^3$, $c_p = 875 \text{ kJ/kg.°C}$, and $\alpha = 7.3 \times 10^{-5} \text{ m}^2/\text{s}$. The thermal conductivity of the plate can be determined from $k = \alpha \rho c_p = 177 \text{ W/m.°C}$ (or it can be read from Table A-24).

Analysis The mass of the iron's base plate is

$$m = \rho V = \rho LA = (2770 \text{ kg/m}^3)(0.005 \text{ m})(0.03 \text{ m}^2) = 0.4155 \text{ kg}$$

Noting that only 85 percent of the heat generated is transferred to the plate, the rate of heat transfer to the iron's base plate is

$$\dot{Q}_{\rm in} = 0.85 \times 1000 \,\mathrm{W} = 850 \,\mathrm{W}$$

The temperature of the plate, and thus the rate of heat transfer from the plate, changes during the process. Using the average plate temperature, the average rate of heat loss from the plate is determined from

$$\dot{Q}_{\text{loss}} = hA(T_{\text{plate, ave}} - T_{\infty}) = (12 \text{ W/m}^2.^{\circ}\text{C})(0.03 \text{ m}^2) \left(\frac{140 + 22}{2} - 22\right)^{\circ}\text{C} = 21.2 \text{ W}$$

Energy balance on the plate can be expressed as

$$E_{\rm in} - E_{\rm out} = \Delta E_{\rm plate} \rightarrow \dot{Q}_{\rm in} \Delta t - \dot{Q}_{\rm out} \Delta t = \Delta E_{\rm plate} = mc_p \Delta T_{\rm plate}$$

Solving for Δt and substituting,

$$\Delta t = \frac{mc_p \Delta T_{\text{plate}}}{\dot{Q}_{\text{in}} - \dot{Q}_{\text{out}}} = \frac{(0.4155 \text{ kg})(875 \text{ J/kg.}^\circ\text{C})(140 - 22)^\circ\text{C}}{(850 - 21.2) \text{ J/s}} = 51.8 \text{ s}$$

which is the time required for the plate temperature to reach 140 °C. To determine whether it is realistic to assume the plate temperature to be uniform at all times, we need to calculate the Biot number,

$$L_c = \frac{V}{A_s} = \frac{LA}{A} = L = 0.005 \text{ m}$$

$$Bi = \frac{hL_c}{k} = \frac{(12 \text{ W/m}^2.^\circ\text{C})(0.005 \text{ m})}{(177.0 \text{ W/m}.^\circ\text{C})} = 0.00034 < 0.1$$

It is realistic to assume uniform temperature for the plate since Bi < 0.1.

Discussion This problem can also be solved by obtaining the differential equation from an energy balance on the plate for a differential time interval, and solving the differential equation. It gives

$$T(t) = T_{\infty} + \frac{\dot{Q}_{\rm in}}{hA} \left(1 - \exp(-\frac{hA}{mc_p}t) \right)$$

Substituting the known quantities and solving for *t* again gives 51.8 s.

Air 22°C