**4-102** Methane is heated in a rigid container. The final pressure of the methane is to be determined using the ideal gas equation and the Benedict-Webb-Rubin equation of state.

Analysis (a) From the ideal gas equation of state,

$$P_2 = P_1 \frac{T_2}{T_1} = (100 \text{ kPa}) \frac{673 \text{ K}}{293 \text{ K}} = 229.7 \text{ kPa}$$

The specific molar volume of the methane is

$$\overline{v}_1 = \overline{v}_2 = \frac{R_u T_1}{P_1} = \frac{(8.314 \text{ kPa} \cdot \text{m}^3/\text{kmol} \cdot \text{K})(293 \text{ K})}{100 \text{ kPa}} = 24.36 \text{ m}^3/\text{kmol}$$

(b) The specific molar volume of the methane is

$$\overline{v}_1 = \overline{v}_2 = \frac{R_u T_1}{P_1} = \frac{(8.314 \text{ kPa} \cdot \text{m}^3/\text{kmol} \cdot \text{K})(293 \text{ K})}{100 \text{ kPa}} = 24.36 \text{ m}^3/\text{kmol}$$

.

Using the coefficients of Table 4-4 for methane and the given data, the Benedict-Webb-Rubin equation of state for state 2 gives

$$P_{2} = \frac{R_{u}T_{2}}{\overline{v}_{2}} + \left(B_{0}R_{u}T_{2} - A_{0} - \frac{C_{0}}{T_{2}^{2}}\right)\frac{1}{\overline{v}^{2}} + \frac{bR_{u}T_{2} - a}{\overline{v}^{3}} + \frac{a\alpha}{\overline{v}^{6}} + \frac{c}{\overline{v}^{3}T_{2}^{2}}\left(1 + \frac{\gamma}{\overline{v}^{2}}\right)\exp(-\gamma/\overline{v}^{2})$$

$$= \frac{(8.314)(673)}{24.36} + \left(0.04260 \times 8.314 \times 673 - 187.91 - \frac{2.286 \times 10^{6}}{673^{2}}\right)\frac{1}{24.36^{2}} + \frac{0.003380 \times 8.314 \times 673 - 5.00}{24.36^{3}}$$

$$+ \frac{5.00 \times 1.244 \times 10^{-4}}{24.36^{6}} + \frac{2.578 \times 10^{5}}{24.36^{3}(673)^{2}}\left(1 + \frac{0.0060}{24.36^{2}}\right)\exp(-0.0060/24.36^{2})$$

$$= 229.8 \text{ kPa}$$

