Ideal Gas

4-70C Propane (molar mass $=44.1 \mathrm{~kg} / \mathrm{kmol}$) poses a greater fire danger than methane (molar mass $=16$ $\mathrm{kg} / \mathrm{kmol}$) since propane is heavier than air (molar mass $=29 \mathrm{~kg} / \mathrm{kmol}$), and it will settle near the floor. Methane, on the other hand, is lighter than air and thus it will rise and leak out.

4-71C A gas can be treated as an ideal gas when it is at a high temperature or low pressure relative to its critical temperature and pressure.

4-72C R_{u} is the universal gas constant that is the same for all gases whereas R is the specific gas constant that is different for different gases. These two are related to each other by $R=R_{u} / M$, where M is the molar mass of the gas.

4-73C Mass m is simply the amount of matter; molar mass M is the mass of one mole in grams or the mass of one kmol in kilograms. These two are related to each other by $m=N M$, where N is the number of moles.

4-74E The specific volume of oxygen at a specified state is to be determined.
Assumptions At specified conditions, oxygen behaves as an ideal gas.
Properties The gas constant of oxygen is $R=0.3353 \mathrm{psia} \cdot \mathrm{ft}^{3} / \mathrm{lbm} \cdot \mathrm{R}$ (Table A-1E).
Analysis According to the ideal gas equation of state,

$$
\boldsymbol{v}=\frac{R T}{P}=\frac{\left(0.3353 \mathrm{psia} \cdot \mathrm{ft}^{3} / \mathrm{lbm} \cdot \mathrm{R}\right)(80+460 \mathrm{R})}{25 \mathrm{psia}}=7.242 \mathrm{ft}^{3} / \mathrm{lbm}
$$

4-75 The pressure in a container that is filled with air is to be determined.
Assumptions At specified conditions, air behaves as an ideal gas.
Properties The gas constant of air is $R=0.287 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$ (Table A-1).
Analysis The definition of the specific volume gives

$$
\boldsymbol{v}=\frac{\boldsymbol{v}}{m}=\frac{0.100 \mathrm{~m}^{3}}{1 \mathrm{~kg}}=0.100 \mathrm{~m}^{3} / \mathrm{kg}
$$

Using the ideal gas equation of state, the pressure is

$$
P=\frac{R T}{v}=\frac{\left(0.287 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(27+273 \mathrm{~K})}{0.100 \mathrm{~m}^{3} / \mathrm{kg}}=861 \mathrm{kPa}
$$

