
7-122 A solar pond power plant operates by absorbing heat from the hot region near the bottom, and rejecting waste heat to the cold region near the top. The maximum thermal efficiency that the power plant can have is to be determined.

Analysis The highest thermal efficiency a heat engine operating between two specified temperature limits can have is the Carnot efficiency, which is determined from

$$\eta_{\text{th,max}} = \eta_{\text{th,C}} = 1 - \frac{T_L}{T_H} = 1 - \frac{308 \text{ K}}{353 \text{ K}} = 0.127 \text{ or } \mathbf{12.7\%}$$

In reality, the temperature of the working fluid must be above 35°C in the condenser, and below 80°C in the boiler to allow for any effective heat transfer. Therefore, the maximum efficiency of the actual heat engine will be lower than the value calculated above.

7-123 A Carnot heat engine cycle is executed in a closed system with a fixed mass of steam. The net work output of the cycle and the ratio of sink and source temperatures are given. The low temperature in the cycle is to be determined.

Assumptions The engine is said to operate on the Carnot cycle, which is totally reversible.

Analysis The thermal efficiency of the cycle is

$$\eta_{\rm th} = 1 - \frac{T_L}{T_H} = 1 - \frac{1}{2} = 0.5$$

Also,

$$\eta_{\text{th}} = \frac{W}{Q_H} \longrightarrow Q_H = \frac{W}{\eta_{\text{th}}} = \frac{25\text{kJ}}{0.5} = 50\text{kJ}$$
$$Q_L = Q_H - W = 50 - 25 = 25 \text{ kJ}$$

and

$$q_L = \frac{Q_L}{m} = \frac{25 \text{ kJ}}{0.0103 \text{ kg}} = 2427.2 \text{ kJ/kg} = h_{fg@T_L}$$

since the enthalpy of vaporization h_{fg} at a given *T* or *P* represents the amount of heat transfer as 1 kg of a substance is converted from saturated liquid to saturated vapor at that *T* or *P*. Therefore, T_L is the temperature that corresponds to the h_{fg} value of 2427.2 kJ/kg, and is determined from the steam tables to be

$$T_L = 31.3^{\circ}C$$

Carnot HE 0.0103 kg H₂O