7-29 A coal-burning power plant produces 300 MW of power. The amount of coal consumed during a one-day period and the rate of air flowing through the furnace are to be determined.

Assumptions 1 The power plant operates steadily. 2 The kinetic and potential energy changes are zero.

Properties The heating value of the coal is given to be 28,000 kJ/kg.

Analysis (a) The rate and the amount of heat inputs to the power plant are

$$\dot{Q}_{in} = \frac{W_{net,out}}{\eta_{th}} = \frac{300 \text{ MW}}{0.32} = 937.5 \text{ MW}$$

 $Q_{in} = \dot{Q}_{in} \Delta t = (937.5 \text{ MJ/s})(24 \times 3600 \text{ s}) = 8.1 \times 10^7 \text{ MJ}$

The amount and rate of coal consumed during this period are

.

$$m_{\text{coal}} = \frac{Q_{\text{in}}}{q_{\text{HV}}} = \frac{8.1 \times 10^7 \text{ MJ}}{28 \text{ MJ/kg}} = 2.893 \times 10^6 \text{ kg}$$
$$\dot{m}_{\text{coal}} = \frac{m_{\text{coal}}}{\Delta t} = \frac{2.893 \times 10^6 \text{ kg}}{24 \times 3600 \text{ s}} = 33.48 \text{ kg/s}$$

(b) Noting that the air-fuel ratio is 12, the rate of air flowing through the furnace is

$$\dot{m}_{air} = (AF)\dot{m}_{coal} = (12 \text{ kg air/kg fuel})(33.48 \text{ kg/s}) = 401.8 \text{ kg/s}$$