ENSC 388 Week \#2, Tutorial \#1- Dimensions and Units

Problem 1: Water flows through a pipe with diameter $=2$ in. If the average velocity of water is $1 \mathrm{~m} / \mathrm{s}$, find mass flow rate of water in ($\mathrm{lbm} / \mathrm{s}$) and (kg / s). Consider density of water $62.1 \mathrm{lbm} / f t^{3}$ and use $\dot{m}=\rho \pi \frac{d^{2}}{4} \bar{V}$.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:
\dot{m} - Mass flow rate of water in (lbm $/ \mathrm{s}$) and (kg / s)
Step 2: Prepare a data table

Data	Value	Unit
d	2	$[\mathrm{in}]$
ρ	62.1	$\left[\frac{\mathrm{lbm}}{\mathrm{ft}^{3}}\right]$
\bar{V}	1	$\left[\frac{m}{s}\right]$

Step 3: Calculations

Part a) English Unit

$\dot{m}=\frac{\pi}{4}(62.1)\left[\frac{\mathrm{lbm}}{\mathrm{ft}^{3}}\right] \times(2)^{2}[i n]^{2} \times\left[\frac{1 \mathrm{ft}}{12 \mathrm{in}}\right]^{2} \times(1)\left[\frac{\mathrm{m}}{\mathrm{s}}\right] \times\left[\frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}\right]=4.44\left[\frac{\mathrm{lbm}}{\mathrm{s}}\right]$

Part b) SI Unit

Using conversion factors the mass flow rate can be written in SI units.

$$
\begin{equation*}
\dot{m}=4.44\left[\frac{\mathrm{lbm}}{\mathrm{~s}}\right] \times\left[\frac{0.4536 \mathrm{~kg}}{\mathrm{lbm}}\right]=2.0140\left[\frac{\mathrm{~kg}}{\mathrm{~s}}\right] \tag{Eq2}
\end{equation*}
$$

Step 4: Concluding Statement

The mass flow rate was found to be $4.44\left[\frac{\mathrm{lbm}}{\mathrm{s}}\right]$ or $2.0140\left[\frac{\mathrm{~kg}}{\mathrm{~s}}\right]$.

Problem 2: A car goes with average velocity of $100 \mathrm{~km} / \mathrm{h}$. Find kinetic energy of the car in $[\mathrm{Btu}]$ and $[J]$.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:
KE: kinetic energy of the car in [Btu] and [J]
Step 2: Prepare a data table

Data	Value	Unit
m	2800	$[\mathrm{lbm}]$
\bar{V}	100	$\left[\frac{\mathrm{~km}}{\mathrm{~h}}\right]$

Step 3: Calculations

$$
\begin{equation*}
K E=\frac{1}{2} m \bar{V}^{2} \tag{Eq1}
\end{equation*}
$$

Part a) English Unit

$$
\begin{align*}
& K E=\frac{1}{2}(2800)[\mathrm{lbm}] \times(100)^{2}\left[\frac{\mathrm{~km}}{\mathrm{~h}}\right]^{2} \times\left[\frac{1000 \mathrm{~m}}{1 \mathrm{~km}}\right]^{2} \times\left[\frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}\right]^{2} \times \tag{Eq2}\\
& {\left[\frac{1 \mathrm{~h}}{3600 \mathrm{~s}}\right]^{2} \times\left[\frac{1 \text { slug }}{32.174 \mathrm{lbm}}\right]=361400\left[\frac{\text { slug. } \mathrm{ft}^{2}}{\mathrm{~s}^{2}}\right]=361400[\mathrm{lbf} . \mathrm{ft}]}
\end{align*}
$$

Note: $1[l b f]=1[$ slug $] \times 1\left[\frac{f t}{s^{2}}\right]$

$$
\begin{equation*}
K E=361400[l b f . f t] \times\left[\frac{1 \text { Btu }}{778 \mathrm{lbf} . f t}\right]=465[\mathrm{Btu}] \tag{Eq3}
\end{equation*}
$$

Part b) SI Unit

Using conversion factors the kinetic energy can be written in SI units.

$$
\begin{equation*}
K E=465[\text { Btu }] \times\left[\frac{1054 \mathrm{~J}}{1 \mathrm{Btu}}\right]=490 \times 10^{3}[\mathrm{~J}] \tag{Eq4}
\end{equation*}
$$

Step 4: Concluding Statement

The kinetic energy was found to be $465[\mathrm{Btu}]$ or $490 \times 10^{3}[\mathrm{~J}]$.

Problem 3: Calculate power required to lift a 1 ton mass to 30 yards above the ground in 10 minutes. Express your result in $[h p]$ and $[k W]$.

Solution

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:
\dot{W} : power required to lift a 1 ton mass to 30 yards elevation in [hp] and [kW]

Step 2: Prepare a data table

Data	Value	Unit
m	1	$[$ ton $]$
Δz	30	$[$ yards $]$
t	10	$[\mathrm{~min}]$

Step 3: Calculations

$$
\begin{equation*}
\dot{W}=\frac{m g \Delta z}{t} \tag{Eq1}
\end{equation*}
$$

Part a) English Unit

$$
\begin{align*}
& \dot{W}=1[\text { ton }] \times(9.8)^{2}\left[\frac{\mathrm{~m}}{s^{2}}\right] \times 30[\text { yards }] \times \frac{1}{10[\mathrm{~min}]} \times\left[\frac{2000 \mathrm{lbm}}{1 \text { ton }}\right] \times \tag{Eq2}\\
& {\left[\frac{1 \text { slug }}{32.174 \mathrm{lbm}}\right] \times\left[\frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}\right] \times\left[\frac{3 \mathrm{ft}}{1 \text { yard }}\right]=17988\left[\frac{\mathrm{lbf} \cdot \mathrm{ft}}{\mathrm{~min}}\right]} \\
& \dot{W}=17988\left[\frac{\mathrm{lbf} . \mathrm{ft}}{\mathrm{~min}}\right] \times\left[\frac{1 \mathrm{hp}}{550 \mathrm{lbf} . \mathrm{ft} / \mathrm{s}}\right] \times\left[\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right]=0.545[\mathrm{hp}]
\end{align*}
$$

Part b) SI Unit

Using conversion factors the power can be written in SI units.

$$
\begin{equation*}
\dot{W}=0.545[h p] \times\left[\frac{0.746 \mathrm{~kW}}{1 \mathrm{hp}}\right]=0.407[k W] \tag{Eq4}
\end{equation*}
$$

Step 4: Concluding Statement

The power was found to be $0.545[h p]$ or $0.407[k W]$.

