ENSC 388 Week # 5, Tutorial # 4–Energy Analysis of Control Volumes

Problem 1: Consider the simple steam power plant, as shown in the figure. The following data are for such a power plant.

Location	Pressure	Temperature or Quality	
Leaving boiler	2.0 MPa	300°C	
Entering turbine	1.9 MPa	290°C	
Leaving turbine, entering condenser	15 kPa	90%	
Leaving condenser, entering pump	14 kPa	45°C	
Pump work = 4 kJ/kg			

Determine the following quantities per kilogram flowing through the unit:

- a. Heat transfer in the line between boiler and turbine.
- b. Turbine work.
- c. Heat transfer in condenser.
- d. Heat transfer in boiler.

<u>Solution</u>

Step 1: Write out what you are required to solve for (this is so you don't forget to answer everything the question is asking for)

Find:

- a) q_{12} Heat transfer in the line between boiler and turbine.
- b) w_{23} Turbine work.
- c) q_{34} Heat transfer in condenser.
- d) q_{51} Heat transfer in boiler.

Step 2: Prepare a data table

Data	Value	Data	Value
P_1	2 [MPa]	T_1	300 [° <i>C</i>]
P_2	1.9 [<i>MPa</i>]	T_2	290 [° <i>C</i>]
P_3	15 [kPa]	<i>x</i> ₃	0.9
P_4	14 [kPa]	T_4	45 [° <i>C</i>]
w _p	- 4 [kJ / kg]		

Step 3: State your assumptions (you may have to add to your list of assumptions as you proceed in the problem)

Assumptions:

- 1) All processes are steady-state.
- 2) Changes in kinetic and potential energies are negligible.

Step 4: Calculations

There is a certain advantage in assigning a number to various points in the cycle. For this reason the subscripts i and e in the steady-state energy equation are often replaced by appropriate numbers. Using the notation of the cycle, we have:

$$\begin{cases} h_1 = 3024.2 \begin{bmatrix} kJ \\ /kg \end{bmatrix} \\ h_2 = 3002.5 \begin{bmatrix} kJ \\ /kg \end{bmatrix} \end{cases} : \text{from Table A - 6} \\ h_3 = h_{f3} + x_3 h_{fg3} = 225.94 + 0.9 (2372.3) = 2361.0 \begin{bmatrix} kJ \\ /kg \end{bmatrix} : \text{from Table A - 5} \\ h_4 = h_f @ 45^\circ C = 188.44 \begin{bmatrix} kJ \\ /kg \end{bmatrix} : \text{from Table A - 4} \end{cases}$$

a) For the control volume for the pipe line between the boiler and the turbine, the first law and solution are

$$q_{12} + h_1 = h_2 \implies q_{12} = h_2 - h_1 = 3002.5 - 3024.2 = -21.7 \ kJ / kg$$
 (Eq1)

Note: in most application, pipes are well insulated to prevent (or minimize) heat losses to the surroundings; thus theses losses can be neglected.

b) A turbine is essentially an adiabatic machine. Therefore, it is reasonable to neglect heat transfer in the first law, so that

$$-w_{23} + h_2 = h_3 \implies w_{23} = h_2 - h_3 = 3002.5 - 2361.0 = 641.5 \, kJ \,/\, kg$$
 (Eq2)

c) There is no work for the control volume enclosing the condenser. Therefore, the first law and solution are

$$q_{34} + h_3 = h_4 \implies q_{34} = h_4 - h_3 = 188.44 - 2361.0 = -2172.56 \, kJ / kg$$
 (Eq3)

d) If we consider a control volume enclosing the boiler, the work is equal to zero, so that the first law becomes

$$q_{51} + h_5 = h_1 \tag{Eq4}$$

The above equation requires the value of h_5 , which can be found by taking a control volume around the pump.

$$-w_{45} + h_4 = h_5 \implies h_5 = -(-4) + 188.44 = 192.44 \ kJ / kg$$
 (Eq5)

Therefore, for the boiler,

$$q_{51} + h_5 = h_1 \implies q_{51} = h_1 - h_5 = 3024.2 - 192.44 = 2831.76 \, kJ / kg$$
 (Eq6)