11-61 A two-evaporator compression refrigeration cycle with refrigerant-134a as the working fluid is considered. The cooling rate of the high-temperature evaporator, the power required by the compressor, and the COP of the system are to be determined.
Assumptions 1 Steady operating conditions exist. 2 Kinetic and potential energy changes are negligible.

Analysis From the refrigerant tables (Tables A-11, A-12, and A-13),

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{3}=800 \mathrm{kPa} \\
\text { sat. liquid }
\end{array}\right\} h_{3}=h_{f @ 800 \mathrm{kPa}}=95.47 \mathrm{~kJ} / \mathrm{kg} \\
& \begin{array}{l}
h_{4}=h_{6} \cong h_{3}=95.47 \mathrm{~kJ} / \mathrm{kg} \quad \text { (throttling) } \\
\left.\begin{array}{l}
T_{5}=0^{\circ} \mathrm{C} \\
\text { sat. vapor }
\end{array}\right\} h_{5}=h_{g @ 0^{\circ} \mathrm{C}}=250.45 \mathrm{~kJ} / \mathrm{kg} \\
\left.\begin{array}{l}
T_{7}=-26.4^{\circ} \mathrm{C} \\
\text { sat. vapor }
\end{array}\right\} h_{7}=h_{g} @-26.4^{\circ} \mathrm{C}=234.44 \mathrm{~kJ} / \mathrm{kg}
\end{array}
\end{aligned}
$$

The mass flow rate through the low-temperature evaporator is found by

$$
\dot{Q}_{L}=\dot{m}_{2}\left(h_{7}-h_{6}\right) \longrightarrow \dot{m}_{2}=\frac{\dot{Q}_{L}}{h_{7}-h_{6}}=\frac{8 \mathrm{~kJ} / \mathrm{s}}{(234.44-95.47) \mathrm{kJ} / \mathrm{kg}}=0.05757 \mathrm{~kg} / \mathrm{s}
$$

The mass flow rate through the warmer evaporator is then

$$
\dot{m}_{1}=\dot{m}-\dot{m}_{2}=0.1-0.05757=0.04243 \mathrm{~kg} / \mathrm{s}
$$

Applying an energy balance to the point in the system where the two evaporator streams are recombined gives

$$
\dot{m}_{1} h_{5}+\dot{m}_{2} h_{7}=\dot{m} h_{1} \longrightarrow h_{1}=\frac{\dot{m}_{1} h_{5}+\dot{m}_{2} h_{7}}{\dot{m}}=\frac{(0.04243)(250.45)+(0.05757)(234.44)}{0.1}=241.23 \mathrm{~kJ} / \mathrm{kg}
$$

Then,

$$
\left.\begin{array}{l}
P_{1}=P_{\text {sat } @-26.4^{\circ} \mathrm{C}} \cong 100 \mathrm{kPa} \\
h_{1}=241.23 \mathrm{~kJ} / \mathrm{kg} \\
P_{2}=800 \mathrm{kPa} \\
s_{2}=s_{1}
\end{array}\right\} s_{1}=0.9789 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

The cooling rate of the high-temperature evaporator is

$$
\dot{Q}_{L}=\dot{m}_{1}\left(h_{5}-h_{4}\right)=(0.04243 \mathrm{~kg} / \mathrm{s})(250.45-95.47) \mathrm{kJ} / \mathrm{kg}=\mathbf{6 . 5 8} \mathbf{~ k W}
$$

The power input to the compressor is

$$
\dot{W}_{\text {in }}=\dot{m}\left(h_{2}-h_{1}\right)=(0.1 \mathrm{~kg} / \mathrm{s})(286.26-241.23) \mathrm{kJ} / \mathrm{kg}=4.50 \mathrm{~kW}
$$

The COP of this refrigeration system is determined from its definition,

$$
\mathrm{COP}_{\mathrm{R}}=\frac{\dot{Q}_{L}}{\dot{W}_{\mathrm{in}}}=\frac{(8+6.58) \mathrm{kW}}{4.50 \mathrm{~kW}}=\mathbf{3 . 2 4}
$$

