13-96 A mixture of gases is placed in a spring-loaded piston-cylinder device. The device is now heated until the pressure rises to a specified value. The total work and heat transfer for this process are to be determined.
Properties The molar masses of $\mathrm{Ne}, \mathrm{O}_{2}$, and N_{2} are $20.18,32.0,28.0 \mathrm{~kg} / \mathrm{kmol}$, respectively and the gas constants are $0.4119,0.2598$, and $0.2968 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively (Table A-1). The constant-volume specific heats are $0.6179,0.658$, and $0.743 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{K}$, respectively (Table A-2a).
Analysis The total pressure is 200 kPa and the partial pressures are

$$
\begin{aligned}
& P_{\mathrm{Ne}}=y_{\mathrm{Ne}} P_{m}=(0.25)(200 \mathrm{kPa})=50 \mathrm{kPa} \\
& P_{\mathrm{O} 2}=y_{\mathrm{O} 2} P_{m}=(0.50)(200 \mathrm{kPa})=100 \mathrm{kPa} \\
& P_{\mathrm{N} 2}=y_{\mathrm{N} 2} P_{m}=(0.25)(200 \mathrm{kPa})=50 \mathrm{kPa}
\end{aligned}
$$

The mass of each constituent for a volume of $0.1 \mathrm{~m}^{3}$ and a temperature of $10^{\circ} \mathrm{C}$ are

$$
\begin{aligned}
& m_{\mathrm{Ne}}=\frac{P_{\mathrm{Ne}} \boldsymbol{V}_{m}}{R_{\mathrm{Ne}} T}=\frac{(50 \mathrm{kPa})\left(0.1 \mathrm{~m}^{3}\right)}{\left(0.4119 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(283 \mathrm{~K})}=0.04289 \mathrm{~kg} \\
& m_{\mathrm{O} 2}=\frac{P_{\mathrm{O} 2} \boldsymbol{V}_{m}}{R_{\mathrm{O} 2} T}=\frac{(100 \mathrm{kPa})\left(0.1 \mathrm{~m}^{3}\right)}{\left(0.2598 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(283 \mathrm{~K})}=0.1360 \mathrm{~kg} \\
& m_{\mathrm{N} 2}=\frac{P_{\mathrm{N} 2} V_{m}}{R_{\mathrm{N} 2} T}=\frac{(50 \mathrm{kPa})\left(0.1 \mathrm{~m}^{3}\right)}{\left(0.2968 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(283 \mathrm{~K})}=0.05953 \mathrm{~kg} \\
& m_{\text {total }}=0.04289+0.1360+0.05953=0.2384 \mathrm{~kg}
\end{aligned}
$$

The mass fractions are

$$
\begin{aligned}
\mathrm{mf}_{\mathrm{Ne}} & =\frac{m_{\mathrm{Ne}}}{m_{m}}=\frac{0.04289 \mathrm{~kg}}{0.2384 \mathrm{~kg}}=0.1799 \\
\mathrm{mf}_{\mathrm{O} 2} & =\frac{m_{\mathrm{O} 2}}{m_{m}}=\frac{0.1360 \mathrm{~kg}}{0.2384 \mathrm{~kg}}=0.5705 \\
\mathrm{mf}_{\mathrm{N} 2} & =\frac{m_{\mathrm{N} 2}}{m_{m}}=\frac{0.05953 \mathrm{~kg}}{0.2384 \mathrm{~kg}}=0.2497
\end{aligned}
$$

The constant-volume specific heat of the mixture is determined from

$$
\begin{aligned}
c_{v} & =\mathrm{mf}_{\mathrm{Ne}} c_{v, \mathrm{Ne}}+\mathrm{mf}_{\mathrm{O} 2} c_{v, \mathrm{O} 2}+\mathrm{mf}_{\mathrm{N} 2} c_{\nu, \mathrm{N} 2} \\
& =0.1799 \times 0.6179+0.5705 \times 0.658+0.2497 \times 0.743=0.672 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{aligned}
$$

The moles are

$$
\begin{aligned}
& N_{\mathrm{Ne}}=\frac{m_{\mathrm{Ne}}}{M_{\mathrm{Ne}}}=\frac{0.04289 \mathrm{~kg}}{20.18 \mathrm{~kg} / \mathrm{kmol}}=0.002126 \mathrm{kmol} \\
& N_{\mathrm{O} 2}=\frac{m_{\mathrm{O} 2}}{M_{\mathrm{O} 2}}=\frac{0.1360 \mathrm{~kg}}{32 \mathrm{~kg} / \mathrm{kmol}}=0.00425 \mathrm{kmol} \\
& N_{\mathrm{N} 2}=\frac{m_{\mathrm{N} 2}}{M_{\mathrm{N} 2}}=\frac{0.05953 \mathrm{~kg}}{28 \mathrm{~kg} / \mathrm{kmol}}=0.002126 \mathrm{kmol} \\
& N_{\mathrm{m}}=N_{\mathrm{Ne}}+N_{\mathrm{O} 2}+N_{\mathrm{N} 2}=0.008502 \mathrm{kmol}
\end{aligned}
$$

Then the apparent molecular weight of the mixture becomes

$$
M_{m}=\frac{m_{m}}{N_{m}}=\frac{0.2384 \mathrm{~kg}}{0.008502 \mathrm{kmol}}=28.04 \mathrm{~kg} / \mathrm{kmol}
$$

The apparent gas constant of the mixture is

$$
R=\frac{R_{u}}{M_{m}}=\frac{8.314 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{~K}}{28.05 \mathrm{~kg} / \mathrm{kmol}}=0.2964 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
$$

The mass contained in the system is

$$
m=\frac{P_{1} V_{1}}{R T_{1}}=\frac{(200 \mathrm{kPa})\left(0.1 \mathrm{~m}^{3}\right)}{\left(0.2964 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)(283 \mathrm{~K})}=0.2384 \mathrm{~kg}
$$

Noting that the pressure changes linearly with volume, the final volume is determined by linear interpolation to be

$$
\frac{500-200}{1000-200}=\frac{\boldsymbol{V}_{2}-0.1}{1.0-0.1} \longrightarrow \boldsymbol{V}_{2}=0.4375 \mathrm{~m}^{3}
$$

The final temperature is

$$
T_{2}=\frac{P_{2} V_{2}}{m R}=\frac{(500 \mathrm{kPa})\left(0.4375 \mathrm{~m}^{3}\right)}{(0.2384 \mathrm{~kg})\left(0.2964 \mathrm{kPa} \cdot \mathrm{~m}^{3} / \mathrm{kg} \cdot \mathrm{~K}\right)}=3096 \mathrm{~K}
$$

The work done during this process is

$$
W_{\text {out }}=\frac{P_{1}+P_{2}}{2}\left(\boldsymbol{V}_{2}-\boldsymbol{V}_{1}\right)=\frac{(500+200) \mathrm{kPa}}{2}(0.4375-0.1) \mathrm{m}^{3}=\mathbf{1 1 8} \mathbf{k J}
$$

An energy balance on the system gives

$$
Q_{\mathrm{in}}=W_{\text {out }}+m c_{v}\left(T_{2}-T_{1}\right)=118+(0.2384 \mathrm{~kg})(0.672 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K})(3096-283) \mathrm{K}=569 \mathbf{k J}
$$

