8-84 An insulated cylinder initially contains saturated liquid-vapor mixture of water. The cylinder is connected to a supply line, and the steam is allowed to enter the cylinder until all the liquid is vaporized. The amount of steam that entered the cylinder and the exergy destroyed are to be determined.
Assumptions 1 This is an unsteady process since the conditions within the device are changing during the process, but it can be analyzed as a uniform-flow process since the state of fluid at the inlet remains constant. 2 The expansion process is quasi-equilibrium. 3 Kinetic and potential energies are negligible. 4 The device is insulated and thus heat transfer is negligible.
Properties The properties of steam are (Tables A-4 through A-6)

$$
\begin{aligned}
& \left.\begin{array}{l}
P_{1}=300 \mathrm{kPa} \\
x_{1}=13 / 15=0.8667
\end{array}\right\} \begin{array}{l}
h_{1}=h_{f}+x_{1} h_{f g}=561.43+0.8667 \times 2163.5=2436.5 \mathrm{~kJ} / \mathrm{kg} \\
s_{1}=s_{f}+x_{1} s_{f g}=1.6716+0.8667 \times 5.3200=6.2824 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array} \\
& \left.\begin{array}{l}
P_{2}=300 \mathrm{kPa} \\
\text { sat.vapor }
\end{array}\right\} \begin{array}{l}
h_{2}=h_{g @ 300 \mathrm{kPa}}=2724.9 \mathrm{~kJ} / \mathrm{kg} \\
s_{2}=s_{g @ 300 \mathrm{kPa}}=6.9917 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K}
\end{array} \\
& P_{i}=2 \mathrm{MPa} h_{i}=3248.4 \mathrm{~kJ} / \mathrm{kg} \\
& \left.T_{i}=400^{\circ} \mathrm{C}\right\} s_{i}=7.1292 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\
& \text { Analysis (a) We take the cylinder as the system, which is a control volume. } \\
& \text { Noting that the microscopic energies of flowing and nonflowing fluids are } \\
& \text { represented by enthalpy } h \text { and internal energy } u \text {, respectively, the mass and } \\
& \text { energy balances for this unsteady-flow system can be expressed as }
\end{aligned}
$$

Mass balance: $\quad m_{\text {in }}-m_{\text {out }}=\Delta m_{\text {system }} \rightarrow m_{i}=m_{2}-m_{1}$
Energy balance:

$$
\underbrace{E_{\text {in }}-E_{\text {out }}}_{\begin{array}{c}
\text { Net energy transfer } \\
\text { by heat, work, and mass }
\end{array}}=\underbrace{\Delta E_{\text {system }}}_{\begin{array}{c}
\text { Change in internal, kinetic, } \\
\text { potential, etc. energies }
\end{array}}
$$

$$
m_{i} h_{i}=W_{\mathrm{b}, \text { out }}+m_{2} u_{2}-m_{1} u_{1}(\text { since } Q \cong \mathrm{ke} \cong \mathrm{pe} \cong 0)
$$

Combining the two relations gives $0=W_{\mathrm{b}, \text { out }}-\left(m_{2}-m_{1}\right) h_{i}+m_{2} u_{2}-m_{1} u_{1}$
or, $\quad 0=-\left(m_{2}-m_{1}\right) h_{i}+m_{2} h_{2}-m_{1} h_{1}$
since the boundary work and ΔU combine into ΔH for constant pressure expansion and compression processes. Solving for m_{2} and substituting,

$$
m_{2}=\frac{h_{i}-h_{1}}{h_{i}-h_{2}} m_{1}=\frac{(3248.4-2436.5) \mathrm{kJ} / \mathrm{kg}}{(3248.4-2724.9) \mathrm{kJ} / \mathrm{kg}}(15 \mathrm{~kg})=23.27 \mathrm{~kg}
$$

Thus,

$$
m_{i}=m_{2}-m_{1}=23.27-15=8.27 \mathbf{~ k g}
$$

(b) The exergy destroyed during a process can be determined from an exergy balance or directly from its definition $X_{\text {destroyed }}=T_{0} S_{\text {gen }}$ where the entropy generation $S_{\text {gen }}$ is determined from an entropy balance on the insulated cylinder,

$$
\begin{aligned}
\underbrace{S_{\text {in }}-S_{\text {out }}}_{\begin{array}{c}
\text { Net entropy transfer } \\
\text { by heat and mass }
\end{array}}+\underbrace{S_{\text {gen }}}_{\begin{array}{c}
\text { Entropy } \\
\text { generation }
\end{array}} & =\underbrace{\Delta S_{\text {system }}}_{\begin{array}{c}
\text { Change } \\
\text { in entropy }
\end{array}} \\
m_{i} s_{i}+S_{\text {gen }} & =\Delta S_{\text {system }}=m_{2} s_{2}-m_{1} s_{1} \\
S_{\text {gen }} & =m_{2} s_{2}-m_{1} s_{1}-m_{i} s_{i}
\end{aligned}
$$

Substituting, the exergy destruction is determined to be

$$
\begin{aligned}
X_{\text {destroyed }} & =T_{0} S_{\text {gen }}=T_{0}\left[m_{2} s_{2}-m_{1} s_{1}-m_{i} s_{i}\right] \\
& =(298 \mathrm{~K})(23.27 \times 6.9917-15 \times 6.2824-8.27 \times 7.1292) \\
& =\mathbf{2 8 3 2} \mathbf{~ k J}
\end{aligned}
$$

