Impact of Porous Copper Coating on Capillary-Assisted Low Pressure Evaporator for an Adsorption Chiller

Presented by

Poovanna Thimmaiah

Co-authors

Wendell Huttema and Majid Bahrami (PI)

International Sorption Heat Pump Conference

ISHPC2017

Tokyo, Japan

August 08th, 2017

Introduction

Laboratory of Alternative Energy Conversion (LAEC), Canada

Natural Sciences and Engineering Research Council of Canada (NSERC)

The Canadian Queen Elizabeth Advanced Scholarship (QES-AS) Program

Conversion

Reducing Greenhouse Gases

□ Effective low pressure evaporation is a challenge

The cooling power reduces drastically

Thus, water static pressure should be minimized inside the low operating pressure evaporators

Available solutions

• Falling film evaporation

Conversion

Limitations:

- □ Equal distribution of refrigerant
- □ Internal pump (active pumping)

Complex

Higher weight

Advantages:

Uniform evaporation rate along

the circumference of the tube

□ No parasitic energy consumption

Lower weight

No complexity

Previous studies

Dr. Wang Shanghai Jiao Tong University of China

Dr. André Bardow RWTH Aachen University, Germany

Dr. Schnabel Fraunhofer Institute for Solar Energy Systems ISE , Germany

SFU

Tested tubes and fin structures

Industrial partners

Wieland Thermal Solutions., Germany

Wolverine Tube Inc., USA

OD: 3/4" (19 mm)

Turbo Chil **26 FPI** (Wolverine Tube Inc.)

Turbo Chil- **40 FPI** (Wolverine Tube Inc.)

Turbo **ELP** (Wolverine Tube Inc.)

Turbo CLF **40 FPI** (Wolverine Tube Inc.)

Confidential-NDA (Wieland Thermal Solutions)

GEWA-KS **40 FPI** (Wieland Thermal Solutions)

Low pressure evaporator experimental setup

SFU

Comparison of tested tubes

The main features to be considered are

i) continuous parallel fins

ii) high fin density

Performance of finned tubes

Chilled water mass flow rate : 2.5 LPM Chilled water inlet temperature: 15°C

Low pressure evaporator experimental setup

Laboratory for

Conversion

Thermal spray deposition

Porous copper coated evaporator

- The porous copper coating from thermal spray deposition technology
- □ Deposition is compatible with the material of evaporator

LAEC Laboratory for Alternative Energy Conversion

SEM images of the porous coatings

How porous coatings help?

In region 2, the highest heat transfer and evaporation rate occur.

In an uncoated evaporator, the area of zone 2 is limited

Performance of coated evaporator

The evaporation of the same volume of water is nearly twice as fast as compared to its uncoated counterpart.

SFU Comparison between uncoated and coated evaporator

Following the detailed evaluation of low pressure evaporators,

A new micro evaporator is designed and built in the lab

Direct Metal Laser Sintering (DMLS) And 3D Printing

Variation of U with water height

Conversion

Variation of U with water height

Evaluation of evaporator/condenser

Acknowledgements

Natural Sciences and Engineering Research Council of Canada (NSERC) The Canadian Queen Elizabeth Advanced Scholarship (QES-AS) Program

Dr. Karine Brand, Dr. Achim Gotterbarm, Director Global R&D

Dr. Evraam Gorgy, Director of R&D Mr. Bill Korpi Wolverine Tube, Inc.

Black bear poses next to SFU sign in best advertising photo ever

Thanks for your attention Questions/Comments

Conversion

- All thermocouples have same reading at the beginning (Equilibrium State)
- Evaporator pressure reduces when the control value is opened and remains constant until evaporator runs out of water
- For all calculations, data were extracted from demarcated region (Steady state)

Quantifying the evaporator performance

Future work

Laboratory for Alternative Energy Conversion