Sorbent based energy recovery ventilation system for northern residential buildings

Ecem Cerrah, Claire McCague, Majid Bahrami

Simon Fraser University

September, 2018

HEAT POWERED CYCLES CONFERENCE 2018

Laboratory for Alternative Energy Conversion

Adsorption cooling system (ACS)

SFU

- Atmospheric water generation
- HVAC and refrigeration systems
- Thermal management of batteries
- Electronic and power electronics cooling
- Transport phenomena

Simon Fraser University (SFU) Vancouver, Canada

[1] ASHRAE Standard 55 Thermal Environmental Conditions for Human Occupancy 2010.[2] ASHRAE 62.2 Ventilation and Acceptable Indoor Air Quality in Low Rise Residential Buildings, 2013

Sensible effectiveness:

$$\varepsilon_{s} = \frac{(T_{2} - T_{1})}{(T_{3} - T_{1})}$$
 Typically 0.5-0.85

Latent effectiveness:

$$\varepsilon_L = \frac{(\omega_2 - \omega_1)}{(\omega_3 - \omega_1)}$$
 Typically 0.5-0.75

Moisture recovery capacity (MRC), kg/h:

 $MRC = \dot{m}_2 (\omega_2 - \omega_1)$ Typically 0.2-0.4 kg/h for 35 CFM

Heat recovery ventilator (HRV): Aluminum or plastic based

Energy recovery ventilator (ERV): Membrane based (MERV) or desiccant wheel

Frost problem in cold climate

Frost limits^[1]

Heat recovery ventilator (HRV) : -5 °C

MERV down to : -10 °C

[1]Beattie C, Fazio P, Zmeureanu R, Rao J. Appl Therm Eng 2018;129:1281–91.

Aristov YI, Mezentsev I V., Mukhin VA. Energy Build 2008;40:204-8.

VENTIREG: Cold climate ventilation-regeneration

system

- Tested in West Siberia at outdoor temperature down to -35°C
- No frost problem

SFU

- 15 80 CFM air flow rate
- 60-96% heat, 70-90% of moisture recovery
- Power consumption due to fans 20 40W

<u>Sorbent bed</u> Silica, alumina or CaCl2 impregnated alumina (1.8-6 mm)

<u>Heat storage bed</u> Glass, lead balls or gravels(4-7 mm)

Effect of interrupted boundary layer on MRC

$$MRC = \dot{m}_2 (\omega_2 - \omega_1)$$

Proposed sorbent bed concept

Features of the concept

- Small size silica gel pellets (~0.25-0.5mm)
- CaCl₂
- Air channels Low pressure drop
- Small thickness, multiple discs (interrupted boundary layer)

High heat and mass transfer coefficients

High water uptake

Sorbent disks sample preparation

- Silica gel B150 (0.25-0.5 mm), 1) 27 % CaCl₂ and 10% PVA dissolved in water poured in aluminum baking container
- 17 glass rods inserted 2)

SFU

- 3) Dried in oven with 80-120-200°C temperature steps about 1 hour each
- Rods and the aluminum 4) container removed

3)

Experimental set-up

SFU

 $D\approx 140$ mm, d=5 mm, $s\approx 20\text{--}30$ mm, $L\approx 15$ mm

Present study

1 kg of silica gel B1501 (7 discs ~0.14 kg each) Pellet size: 0.25 – 0.5 mm

Reference^[1]

3 kg of IK-011-1 (Al_2O_3 with 10-12%CaCl₂)

Pellet size: 1.8-4.5 mm in diameter, 6-8 mm in length

Humid air conditions: 20-22°C, 27-30 %RH

Dry air conditions: 17-20 °C, 1-1.5 %RH

MRC comparison with a packed bed

40

٠2

۷

Water uptake in half cycle time

 X_{halfcycle} represents the amount of water adsorbed per kg of sorbent material (uptake) in half cycle time

SFU

 Air channel design is optimized to reduce the dead zones between the

$$X_{halfcycle} = \frac{\int_{0}^{t_{halfcycle}} MRCdt}{M_{sorbent}t_{cycle}}$$

Aristov YI, Mezentsev I V, Mukhin VA. Investigation of the moisture exchange in a stationary adsorbent layer through which air is passed 2005;78:44–50.

Required fan power

 Operating cost of the system increases for larger scale applications that require higher flow rate

SFU

Fan power = Air flow rate x Pressure drop

Present study: Silica gel with 27%CaCl₂

IK-011-1 (Al_2O_3 with 10-12%CaCl₂)

- Fan power consumption and air flow are normalized by the sorbent material weight
- The effect of small particle and binder that cause higher pressure drop is compensated by air channels

Present study: Silica gel with 27%CaCl₂

IK-011-1 (Al_2O_3 with 10-12%CaCl₂)

Latent effectiveness

SFU

- Consolidated silica gel CaCl₂ is a promising sorbent in terms of its high uptake property
- Small pellets cause high pressure drop
- Air channel geometry (size, spacing), number of discs and arrangement of discs should be optimized to obtain high MRC, latent effectiveness and low fan power

Black bear poses next to SFU sign in best advertising photo ever

Thanks for your attention Questions/Comments