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Abstract

Let v(G) be the domination number of a graph G, and let a;(G) be
the maximum number of vertices in GG, no two of which are at distance
< k in G. It is easy to see that v(G) > a2(G). In this note it is
proved that v(G) is bounded from above by a linear function in as(G)
if G has no large complete bipartite graph minors. Extensions to other
parameters ay(G) are also derived.

1 Introduction and main results

Let G be a finite undirected graph. A graph H is a minor of G if it can be ob-
tained from a subgraph of G by contracting edges. The distance distg(z,y)
in G of two vertices x,y € V(G) is the length of a shortest (z,y)-path in G.
The distance of a vertex = from a set A C V(G) is min{distg(z,a) | a € A}.

For a set A C V(G), G(A) denotes the subgraph of G induced by A. If
k is a nonnegative integer, we denote by N(A) the set of all vertices of G
which are at distance < k from A. The set A is a k-dominating set in G
if Ni(A) = V(G). The cardinality of a smallest k-dominating set of G is
denoted by 7x(G). A vertex set Xo C V(G) is an ag-set if no two vertices in
Xy are at distance < k in G. Let ai(G) denote the cardinality of a largest
ag-set of G. Observe that v(G) = 71(G) and o(G) = a1(G) are the usual
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domination number and the independence (or stability) number of G. We
refer to [1] for further details on domination in graphs.

It is clear that v;(G) > agr(G). On the other hand, for any r there
is a graph such that ay41(G) = 1 and (G) > r. In order to see this,
let H,, be the Cartesian product of k + 1 copies of the complete graph K,.
Then any two vertices of H,, have distance at most k + 1 in H,,. Therefore,
ag1(Hy) = 1. Since degy () = (k+ 1)(n — 1) and |V (H,)| = n**1, it
follows that v (H,) > n/(k + 1)

The main result of the present note is the following theorem which gives
a linear upper bound on 7(G) in terms of an(G), k < m < 3(k+1), in
any set of graphs with a fixed excluded minor.

Theorem 1.1 Let k > 0 and m > 1 be integers such that k < m < %(k:+1).
If %(G) > 2mr + (g — 1)(mr —r 4+ 1)) (G) — 2mr +r + 1, then G has a
Ky -minor.

Our original motivation was the case when £k =1 and m = 2.

Corollary 1.2 If v(G) > (4r + (¢ — 1)(r + 1))aa(G) — 3r + 1, then G has
a Ky r-minor.

By excluding K3 3-minors, we get:
Corollary 1.3 If G is a planar graph, then v(G) < 20a2(G) — 9.

The existence of a linear bound v(G) < c1a2(G) + ¢o for planar graphs
was conjectured by F. Goring (private communication) who proved such a
bound for plane triangulations.

Corollary 1.3 can be generalized to graphs on any surface. Since the
graph K3, cannot be embedded in a surface of Euler genus g < (k — 3)/2
the following bound holds:

Corollary 1.4 Suppose that G is a graph embedded in a surface of Euler
genus g. Then v(G) < 4(2g + 5)az(G) — 9.

The special case of Theorem 1.1 when k = 0 and m = 1 is also interest-
ing. The proof of Theorem 1.1 in this special case yields an even stronger
statement since the sets Aq,..., A, in that proof are mutually at distance 1
and hence, in the constructed minor K, ,, any two of the r vertices in the
second bipartition class are adjacent. Since 7o(G) = |V (G)]|, the following
result is obtained:



Corollary 1.5 Let K;f,, be the graph obtained from K, , by adding the r-
clique on the vertex set of the bipartition class of cardinality r. Suppose that
K[, is not a minor of G. Then
V(G
o) s VO
2r+q—1

Duchet and Meyniel [2] obtained a special case of Corollary 1.5 when
g < 1. (Note that Kffr_l = Kafr = K,.) They proved that in a graph G
without K, minor V@) .
+r—
a(G) = oo (1)
As it turns out, our proof of Theorem 1.1 restricted to this special case is
quite similar to Duchet and Meyniel’s proof.
Altohough Theorem 1.1 does not work for the case k = 1 and m = 3,
the following result can be used to get such an extension:

Corollary 1.6 Let k > 0 be an integer and let G be a graph. Let r be the
largest integer such that K, is a minor of G. Then

aok(G) < r(2agk+1(G) — 1).

Proof. Let S be a maximum agg-set in G. Define a graph H with V(H) =
S in which two vertices z,y are adjacent if and only if distg(z,y) = 2k + 1.
Suppose that K is a subgraph of H. Let K’ be a subgraph of G' obtained
by taking vertices in V(K) and, for each edge xy of K, adding a path of
length 2k 41 in G joining x and y. Since all such paths are geodesics of odd
length 2k + 1, they cannot intersect each other. This implies that K’ is a
subdivision of K. In particular, if H has K, minor, so does G.

Clearly, a(H) < aor+1(G). Since |V(H)| = a9r(G), (1) implies that
H contains K, minor, where r > a9r(G)/(202;4+1(G) — 1). Then also G
contains a K, minor, and this completes the proof. =

The relation between awy, and aggy1 in Corollary 1.6 cannot be extended
to agg+1 and 4o as shown by the following examples (which are all planar
and hence K33 3 minor free). Let T} be the tree obtained from the star K,
(p > 1) by replacing each edge by a path of length k& + 1. Then (7)) = p
(if k > 1), agkr1(Tx) = p, and aggy2(Tx) = 1. This example also shows that
Theorem 1.1 cannot be extended to the value m = 2k + 2 if k > 1.



2 Proof of Theorem 1.1

In this section, k£ and m will denote fixed nonnegative integers such that
k < m < 2k+1. Let G be a graph, and A C V(G). Let Q = Q}'(A4)
be the subgraph of G which is obtained from the vertex set U = Ui (A) :=
V(G)\ Ni(A) by adding vertices and edges of all paths of length < m in G
which connect two vertices in U. Since m < 2k+1, V(Q)N A = (. Observe
that U = () if and only if A is a k-dominating set of G.

An extended oy, -pair with respect to A and k is a pair (X, Xo) where
Xo € X C V(G) such that:

(a) Xo C Uk(A) is an a,-set in G and every vertex in Uy (A) is at distance
< m from Xj.

(b) Every vertex of X \ Xy lies on an (Xo, Xo)-path in @ = Q}*(A) which
is of length < 2m.

(c) Every component of @) contains precisely one connected component of

Q(X).
Observe that by (a), Xo # 0 if A is not k-dominating.

Lemma 2.1 If Kk < m < 2k + 1 and A C V(QG), then there exists an
extended auy,-pair (X, Xo) with respect to A and k. If m > 1 and A is not
k-dominating, then | X| < 2m|Xo| — 2m + 1.

Proof. If A is k-dominating, then Xy = X = () will do. If m = 0, then
Xo = X = Ug(A). Suppose now that A is not k-dominating and that m > 1.
Let B be a component of Q. Let By = BN G(U) and Vy = V(By). Let us
build a set X C V(B) and the corresponding a,,-set Xo C Vj as follows.
Start with X = Xy = {v}, where v € Vj. If there exists a vertex of V{ at
distance in B at least m + 1 from the current set Xy, let u be such a vertex
which is as close as possible to Xy in B. Observe that distg(u, Xo) > m+1
although the distance in G may be smaller than the distance in B.

Let ugu; ...u, be a shortest path in B from Xg (so ug € Xp) to u =
u, € Vp. Then distp(u;, Xo) = i for i = 0,...,r. Suppose that r > 2m.
The vertices 41, --.,ur—1 do not belong to Vj since their distance from
Xy is > m + 1 but smaller than the distance between v and Xy. Let p =
r— |3 ] —1. By the definition of B, the edge u,uy11 lies on a path of length
< m joining two vertices of Vj. In particular, an end v’ of this edge is at
distance < [F] — 1 from a vertex u” € Vp. If distp(u”, Xo) < m, then
distp(u, Xo) < distp(u,u’) + distp(v/,u") + distp(u”, Xo) < (|5] + 1) +
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([%] —1) 4+ m < r. This contradiction shows that distp(u”, Xo) > m + 1.
However, distg(u”’, Xo) < distp(u”,u') + distp(v/, Xo). If m is even, this
implies that distg(u”, Xo) < r. If m is odd, then we may assume that
u' = up, and then the same conclusion holds. This contradiction to the
choice of u implies that distg(u, Xo) = r < 2m.

Let us add u into Xy and add the vertices ug,uq,...,u, into the set
X. This procedure gives rise to an extended a,,-pair inside B. Clearly,
| X| < 2m|Xo| — 2m + 1.

By taking the union of such sets constructed in all components of (), an
appropriate extended a,,-pair is obtained. O

Proof of Theorem 1.1. By Lemma 2.1, there are pairwise disjoint vertex
sets A1, Ag, ..., A such that (A7, A?) is an extended ay,-pair with respect to
kand AV =, and (A;, AY) is an extended a,-pair with respect to k and the
set AW .= AjU---UA;_q, fori =2,...,r. Moreover, |A;| < 2may, —2m+1,
where a;;, = au, (G). Suppose that v, (G) > (2mr+(¢—1)(mr—r+1))a, —
2mr + 7 + 1. Then v4(G) > (2ma,, — 2m + 1)(r — 1), so A" is not a
k-dominating set. Therefore, A1,..., A, are all nonempty.

For i =1,...,r, let H; = Q"(AY). Let H},..., H. be the connected
components of H,. If ¢ > 2, then H; C H; 1. This implies that each
component of H; is contained in some component of H; 1. For j =1,... ¢,
let H! be the component of H; containing HJ. By (c), each H! contains
a component C’g of H;(A;). Each CJ contains at least one vertex from the
am-set AY. Therefore, t < ayp,.

Let By = AjU---UA,. Since 7(G) > r(2may, —2m + 1), By is not k-
dominating. Hence, there is a vertex v1 € U(B1). By (a), v1 is at distance <
m from some component CJ (1 < j <t) of H.(A,). Then H}, H! ... H{
are the components of H,, H,_1,...,H; (respectively) containing CJ. For
any of the components H? (1 < i < r), there is a path P! in G of length
< 'm connecting v; with Cij C HZJ Let By be the union of By with {v;} and
the internal vertices of the paths P!, Ps,..., P!. Let us repeat the process
with By instead of Bj to obtain a vertex vy € Ug(B2) and linking paths
P2 P2, ..., P2 of length < m joining ve with Ay, As, ..., A, respectively.

Now, repeat the process by constructing Bs, obtaining vs and paths
P} P3, ..., P3 and so on, as long as possible. This way we get a sequence
of vertices wvi,vs,...,vs and paths of length < m joining these vertices
with Aj,...,A.. The only requirement which guarantees the existence of
v1,...,vs and the corresponding paths is that v (G) > r(2ma,, —2m+1) +
(s—1)(1+r(m—1)). Since 7(G) > 2mr+(q—1)(mr—r+1))ay, —2mr+r,



we may take s > (¢—1)au, > (¢—1)t. Then g of the vertices among vy, . .., vs
correspond to the same component CJ, say to C}. Suppose that these ver-
tices are vy, ..., V4.

Let us now consider two vertices v;,v; (1 <i < j < ¢) and two of their
paths P! and Pg where a # b. Suppose that they intersect in a vertex v.
Denote by y = distg(v, Ag), 2 = distg(vj,v), and w = distg(v, Ap). Then
z+y<m,z+w<m, z>k+1,and y + w > distg(Ag, Ap) > k + 1. This
implies that k <y +w —1 < 2m — 2z — 1 < 2m — 2k — 3. Consequently,
P! and P} cannot intersect if 2m < 3(k 4+ 1). In such a case it is easy to

verify that vertices v1,...,vq, the connected subgraphs Ci,cl ...,Ct and
the linking paths P! (1 <i < ¢, 1 <a <) give rise to a K, ,-minor in G.
This completes the proof of Theorem 1.1. =
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