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Abstract

Let γ(G) be the domination number of a graph G, and let αk(G) be
the maximum number of vertices in G, no two of which are at distance
≤ k in G. It is easy to see that γ(G) ≥ α2(G). In this note it is
proved that γ(G) is bounded from above by a linear function in α2(G)
if G has no large complete bipartite graph minors. Extensions to other
parameters αk(G) are also derived.

1 Introduction and main results

Let G be a finite undirected graph. A graph H is a minor of G if it can be ob-
tained from a subgraph of G by contracting edges. The distance distG(x, y)
in G of two vertices x, y ∈ V (G) is the length of a shortest (x, y)-path in G.
The distance of a vertex x from a set A ⊆ V (G) is min{distG(x, a) | a ∈ A}.

For a set A ⊆ V (G), G(A) denotes the subgraph of G induced by A. If
k is a nonnegative integer, we denote by Nk(A) the set of all vertices of G
which are at distance ≤ k from A. The set A is a k-dominating set in G
if Nk(A) = V (G). The cardinality of a smallest k-dominating set of G is
denoted by γk(G). A vertex set X0 ⊆ V (G) is an αk-set if no two vertices in
X0 are at distance ≤ k in G. Let αk(G) denote the cardinality of a largest
αk-set of G. Observe that γ(G) = γ1(G) and α(G) = α1(G) are the usual
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domination number and the independence (or stability) number of G. We
refer to [1] for further details on domination in graphs.

It is clear that γk(G) ≥ α2k(G). On the other hand, for any r there
is a graph such that αk+1(G) = 1 and γk(G) ≥ r. In order to see this,
let Hn be the Cartesian product of k + 1 copies of the complete graph Kn.
Then any two vertices of Hn have distance at most k + 1 in Hn. Therefore,
αk+1(Hn) = 1. Since degHn(x) = (k + 1)(n − 1) and |V (Hn)| = nk+1, it
follows that γk(Hn) ≥ n/(k + 1)k.

The main result of the present note is the following theorem which gives
a linear upper bound on γk(G) in terms of αm(G), k ≤ m < 3

2(k + 1), in
any set of graphs with a fixed excluded minor.

Theorem 1.1 Let k ≥ 0 and m ≥ 1 be integers such that k ≤ m < 3
2(k+1).

If γk(G) ≥ (2mr + (q − 1)(mr − r + 1))αm(G)− 2mr + r + 1, then G has a
Kq,r-minor.

Our original motivation was the case when k = 1 and m = 2.

Corollary 1.2 If γ(G) ≥ (4r + (q − 1)(r + 1))α2(G) − 3r + 1, then G has
a Kq,r-minor.

By excluding K3,3-minors, we get:

Corollary 1.3 If G is a planar graph, then γ(G) ≤ 20α2(G)− 9.

The existence of a linear bound γ(G) ≤ c1α2(G) + c2 for planar graphs
was conjectured by F. Göring (private communication) who proved such a
bound for plane triangulations.

Corollary 1.3 can be generalized to graphs on any surface. Since the
graph K3,k cannot be embedded in a surface of Euler genus g ≤ (k − 3)/2
the following bound holds:

Corollary 1.4 Suppose that G is a graph embedded in a surface of Euler
genus g. Then γ(G) ≤ 4(2g + 5)α2(G)− 9.

The special case of Theorem 1.1 when k = 0 and m = 1 is also interest-
ing. The proof of Theorem 1.1 in this special case yields an even stronger
statement since the sets A1, . . . , Ar in that proof are mutually at distance 1
and hence, in the constructed minor Kq,r, any two of the r vertices in the
second bipartition class are adjacent. Since γ0(G) = |V (G)|, the following
result is obtained:
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Corollary 1.5 Let K+
q,r be the graph obtained from Kq,r by adding the r-

clique on the vertex set of the bipartition class of cardinality r. Suppose that
K+
q,r is not a minor of G. Then

α(G) ≥ |V (G)|+ r

2r + q − 1
.

Duchet and Meyniel [2] obtained a special case of Corollary 1.5 when
q ≤ 1. (Note that K+

1,r−1 = K+
0,r = Kr.) They proved that in a graph G

without Kr minor

α(G) ≥ |V (G)|+ r − 1
2r − 2

. (1)

As it turns out, our proof of Theorem 1.1 restricted to this special case is
quite similar to Duchet and Meyniel’s proof.

Altohough Theorem 1.1 does not work for the case k = 1 and m = 3,
the following result can be used to get such an extension:

Corollary 1.6 Let k ≥ 0 be an integer and let G be a graph. Let r be the
largest integer such that Kr is a minor of G. Then

α2k(G) ≤ r(2α2k+1(G)− 1).

Proof. Let S be a maximum α2k-set in G. Define a graph H with V (H) =
S in which two vertices x, y are adjacent if and only if distG(x, y) = 2k + 1.
Suppose that K is a subgraph of H. Let K ′ be a subgraph of G obtained
by taking vertices in V (K) and, for each edge xy of K, adding a path of
length 2k+ 1 in G joining x and y. Since all such paths are geodesics of odd
length 2k + 1, they cannot intersect each other. This implies that K ′ is a
subdivision of K. In particular, if H has Kr minor, so does G.

Clearly, α(H) ≤ α2k+1(G). Since |V (H)| = α2k(G), (1) implies that
H contains Kr minor, where r ≥ α2k(G)/(2α2k+1(G) − 1). Then also G
contains a Kr minor, and this completes the proof.

The relation between α2k and α2k+1 in Corollary 1.6 cannot be extended
to α2k+1 and α2k+2 as shown by the following examples (which are all planar
and hence K3,3 minor free). Let Tk be the tree obtained from the star K1,p

(p ≥ 1) by replacing each edge by a path of length k + 1. Then γk(Tk) = p
(if k ≥ 1), α2k+1(Tk) = p, and α2k+2(Tk) = 1. This example also shows that
Theorem 1.1 cannot be extended to the value m = 2k + 2 if k ≥ 1.
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2 Proof of Theorem 1.1

In this section, k and m will denote fixed nonnegative integers such that
k ≤ m ≤ 2k + 1. Let G be a graph, and A ⊆ V (G). Let Q = Qmk (A)
be the subgraph of G which is obtained from the vertex set U = Uk(A) :=
V (G) \Nk(A) by adding vertices and edges of all paths of length ≤ m in G
which connect two vertices in U . Since m ≤ 2k+ 1, V (Q)∩A = ∅. Observe
that U = ∅ if and only if A is a k-dominating set of G.

An extended αm-pair with respect to A and k is a pair (X,X0) where
X0 ⊆ X ⊆ V (G) such that:

(a) X0 ⊆ Uk(A) is an αm-set in G and every vertex in Uk(A) is at distance
≤ m from X0.

(b) Every vertex of X \X0 lies on an (X0, X0)-path in Q = Qmk (A) which
is of length ≤ 2m.

(c) Every component of Q contains precisely one connected component of
Q(X).

Observe that by (a), X0 6= ∅ if A is not k-dominating.

Lemma 2.1 If k ≤ m ≤ 2k + 1 and A ⊆ V (G), then there exists an
extended αm-pair (X,X0) with respect to A and k. If m ≥ 1 and A is not
k-dominating, then |X| ≤ 2m|X0| − 2m+ 1.

Proof. If A is k-dominating, then X0 = X = ∅ will do. If m = 0, then
X0 = X = Uk(A). Suppose now that A is not k-dominating and that m ≥ 1.
Let B be a component of Q. Let B0 = B ∩ G(U) and V0 = V (B0). Let us
build a set X ⊆ V (B) and the corresponding αm-set X0 ⊆ V0 as follows.
Start with X = X0 = {v}, where v ∈ V0. If there exists a vertex of V0 at
distance in B at least m+ 1 from the current set X0, let u be such a vertex
which is as close as possible to X0 in B. Observe that distG(u,X0) ≥ m+ 1
although the distance in G may be smaller than the distance in B.

Let u0u1 . . . ur be a shortest path in B from X0 (so u0 ∈ X0) to u =
ur ∈ V0. Then distB(ui, X0) = i for i = 0, . . . , r. Suppose that r > 2m.
The vertices um+1, . . . , ur−1 do not belong to V0 since their distance from
X0 is ≥ m + 1 but smaller than the distance between u and X0. Let p =
r−bm2 c−1. By the definition of B, the edge upup+1 lies on a path of length
≤ m joining two vertices of V0. In particular, an end u′ of this edge is at
distance ≤ dm2 e − 1 from a vertex u′′ ∈ V0. If distB(u′′, X0) ≤ m, then
distB(u,X0) ≤ distB(u, u′) + distB(u′, u′′) + distB(u′′, X0) ≤ (bm2 c + 1) +

4



(dm2 e − 1) + m < r. This contradiction shows that distB(u′′, X0) ≥ m + 1.
However, distB(u′′, X0) ≤ distB(u′′, u′) + distB(u′, X0). If m is even, this
implies that distB(u′′, X0) < r. If m is odd, then we may assume that
u′ = up, and then the same conclusion holds. This contradiction to the
choice of u implies that distB(u,X0) = r ≤ 2m.

Let us add u into X0 and add the vertices u0, u1, . . . , ur into the set
X. This procedure gives rise to an extended αm-pair inside B. Clearly,
|X| ≤ 2m|X0| − 2m+ 1.

By taking the union of such sets constructed in all components of Q, an
appropriate extended αm-pair is obtained.

Proof of Theorem 1.1. By Lemma 2.1, there are pairwise disjoint vertex
sets A1, A2, . . . , Ar such that (A1, A

0
1) is an extended αm-pair with respect to

k and A(1) = ∅, and (Ai, A0
i ) is an extended αm-pair with respect to k and the

set A(i) := A1∪· · ·∪Ai−1, for i = 2, . . . , r. Moreover, |Ai| ≤ 2mαm−2m+1,
where αm = αm(G). Suppose that γk(G) ≥ (2mr+(q−1)(mr−r+1))αm−
2mr + r + 1. Then γk(G) > (2mαm − 2m + 1)(r − 1), so A(r) is not a
k-dominating set. Therefore, A1, . . . , Ar are all nonempty.

For i = 1, . . . , r, let Hi = Qmk (A(i)). Let H1
r , . . . ,H

t
r be the connected

components of Hr. If i ≥ 2, then Hi ⊆ Hi−1. This implies that each
component of Hi is contained in some component of Hi−1. For j = 1, . . . , t,
let Hj

i be the component of Hi containing Hj
r . By (c), each Hj

i contains
a component Cji of Hi(Ai). Each Cjr contains at least one vertex from the
αm-set A0

r . Therefore, t ≤ αm.
Let B1 = A1 ∪ · · · ∪Ar. Since γk(G) > r(2mαm − 2m+ 1), B1 is not k-

dominating. Hence, there is a vertex v1 ∈ Uk(B1). By (a), v1 is at distance ≤
m from some component Cjr (1 ≤ j ≤ t) of Hr(Ar). Then Hj

r ,H
j
r−1, . . . ,H

j
1

are the components of Hr,Hr−1, . . . ,H1 (respectively) containing Cjr . For
any of the components Hj

i (1 ≤ i ≤ r), there is a path P 1
i in G of length

≤ m connecting v1 with Cji ⊆ H
j
i . Let B2 be the union of B1 with {v1} and

the internal vertices of the paths P 1
1 , P

1
2 , . . . , P

1
r . Let us repeat the process

with B2 instead of B1 to obtain a vertex v2 ∈ Uk(B2) and linking paths
P 2

1 , P
2
2 , . . . , P

2
r of length ≤ m joining v2 with A1, A2, . . . , Ar, respectively.

Now, repeat the process by constructing B3, obtaining v3 and paths
P 3

1 , P
3
2 , . . . , P

3
r , and so on, as long as possible. This way we get a sequence

of vertices v1, v2, . . . , vs and paths of length ≤ m joining these vertices
with A1, . . . , Ar. The only requirement which guarantees the existence of
v1, . . . , vs and the corresponding paths is that γk(G) > r(2mαm−2m+ 1) +
(s−1)(1+r(m−1)). Since γk(G) > (2mr+(q−1)(mr−r+1))αm−2mr+r,
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we may take s > (q−1)αm ≥ (q−1)t. Then q of the vertices among v1, . . . , vs
correspond to the same component Cjr , say to C1

r . Suppose that these ver-
tices are v1, . . . , vq.

Let us now consider two vertices vi, vj (1 ≤ i < j ≤ q) and two of their
paths P ia and P jb where a 6= b. Suppose that they intersect in a vertex v.
Denote by y = distG(v,Aa), z = distG(vj , v), and w = distG(v,Ab). Then
z + y ≤ m, z +w ≤ m, z ≥ k + 1, and y +w ≥ distG(Aa, Ab) ≥ k + 1. This
implies that k ≤ y + w − 1 ≤ 2m − 2z − 1 ≤ 2m − 2k − 3. Consequently,
P ia and P jb cannot intersect if 2m < 3(k + 1). In such a case it is easy to
verify that vertices v1, . . . , vq, the connected subgraphs C1

1 , C
1
2 , . . . , C

1
r and

the linking paths P ia (1 ≤ i ≤ q, 1 ≤ a ≤ r) give rise to a Kq,r-minor in G.
This completes the proof of Theorem 1.1.
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