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Abstract

Consumer demand microdata typically exhibit a great deal of expenditure variation but
not very much price variation. In this paper, we propose a semiparametric approach to
the consumer demand problem in which expenditure share equations are nonparametric in
the real expenditure direction and parametric (with …xed coe¢cients) in price directions.
Here, Engel curves are unrestricted so that demands may have any rank. We also consider a
’varying coe¢cients’ extension in which price e¤ects depend on real expenditure. Because the
demand model is derived from a model of cost, it may be restricted to satisfy integrability
and used for consumer surplus calculations. Since real expenditure is not observed, but
rather estimated under the model, we face a semiparametric model with a nonparametrically
generated regressor. We show e¢cient convergence rates for parametric and nonparametric
components. The estimation procedures are introduced for both cases, under integrability
restrictions and without. Further we give speci…cation tests to check these integrability
restrictions. An empirical illustration with Canadian price and expenditure data shows that
Engel curves display curvature which cannot be encompassed by standard parametric models.
In addition, we …nd that although the rationality restriction of Slutsky symmetry is rejected
in our …xed coe¢cients model, it is not rejected in the varying coe¢cients extension.
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1 Introduction

Consumer demand microdata typically exhibit a great deal of expenditure variation but not
very much price variation. In this paper, we propose a semiparametric approach to the
consumer demand problem in which expenditure share equations are nonparametric in the
real expenditure direction and parametric in price directions. This approach puts flexibility
where the data can actually provide a lot of information – the Engel curve – and puts
parametric structure on the price effects, where the data are likely less rich.

Parametric approaches to the estimation of consumer demand systems have the nice feature
of allowing the researcher to estimate a cost function, which makes consumer surplus cal-
culations clear and easy. However, parametric approaches typically impose strict limits on
the complexity of Engel curves. Nonparametric approaches to the estimation of consumer
demand systems have the advantage of letting the data determine the shape of Engel curves,
but do not typically allow the researcher to estimate a cost function. Our semiparametric
model gains the advantages of both by allowing Engel curves to be arbitrarily complex and
yielding a cost function suitable for consumer surplus analysis.

We proceed by specifying a cost function which we call a ‘utility-dependent translog’. This
cost function is essentially a translog cost function, except that some or all of its parameters
depend on utility in a nonparametric way. In our base model, the compensated demand sys-
tem is a partially linear model which is nonparametric in the utility direction and parametric
in the M price directions. In an extension, we allow price effects to depend on utility and
come in via a ‘varying coefficients’ structure.

As a consequence, in our model Engel curves – expenditure-share equations over real expen-
diture at a particular price vector – are unrestricted, and so the demand system can have
any rank up to M − 1 (see Lewbel (1991) for a detailed discussion of the rank of demand
systems). This contrasts sharply with parametric approaches, such as the popular quadratic
almost ideal demand system wherein the demand system is rank 3 and Engel curves are
quadratic in log-expenditure.

Since the demand system is derived from a cost function, it may be restricted to satisfy
homogeneity, symmetry and concavity, which together comprise the integrability conditions.
However, because the cost function cannot be inverted analytically, we cannot substitute
indirect utility into the compensated demand system to generate an uncompensated demand
system. Instead, we numerically invert the cost function into real expenditure – a convenient
cardinalisation of utility – and substitute that into the compensated demand system.

As mentioned above, our approach is semiparametric – expenditure shares are nonparametric
over real expenditure, but price effects come in parametrically. Although this is more restric-
tive than a fully nonparametric approach (such as Haag, Hoderlein and Pendakur 2005),
there are at least two important advantages. First, our model is comprised of functions
which have intuitive economic interpretations. Second, our approach eliminates the curse
of dimensionality faced in multivariate nonparametric regression. In our context, a fully
nonparametric approach to estimating a consumer demand system has M + 1 dimensions,
whereas our approach has only 1 nonparametric dimension.
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If real expenditure were directly observed, then standard semiparametric methods for par-
tially linear models could be applied. However, because it is not observed, we numerically
invert our cost function to generate a consistent predictor for real expenditure. In the econo-
metric theory we must account for the constructed regressor in both the estimation of the
parametric and of the nonparametric part of the model. We provide asymptotics for the par-
tially linear expenditure-share system with any consistent predictor of real expenditure. In
particular, we are able to show

√
n−convergence for the parametric price effects and efficient

convergence rates for the nonparametric components. We also provide consistent predictors
for real expenditure, each of which satisfies the requirements for our constructed regressor
model.

For several decades, economists have been searching for parametric models of consumer de-
mand systems that have sufficient flexibility in Engel curves to accommodate actual behavior
(see, for example, Banks, Blundell and Lewbel 1997). This search led to a plethora of non-
and semiparametric investigations of price-invariant Engel curves (for example: Blundell,
Duncan and Pendakur 1998; Blundell, Chen and Christensen 2004) which revealed substan-
tial evidence of curvature which cannot be accommodated in existing parametric models.
Haag, Hoderlein and Pendakur (2005) propose a fully nonparametric approach to modelling
consumer demand over prices and expenditure, but do not attempt to reduce the dimension-
ality of the problem as one would in a semiparametric approach. Lewbel and Pendakur (2006)
propose a fully parametric approach to modeling consumer demand over prices and expendi-
ture where Engel curves are unrestricted, but price effects are restricted. To our knowledge,
no semiparametric consumer demand models have been proposed in which dimensionality
is reduced, flexibility in the Engel curve and in price effects is retained and integrability is
possible. Our model fills this gap.

The econometric challenge is twofold: to handle semiparametric estimators with nonparamet-
rically generated regressors, and to identify valid predictors for real expenditure. Semipara-
metric partial linear regression was introduced by Robinson (1988) and Speckman (1988),
but without considering generated regressors. For the same regression problem Yatchew
(1997,2003) introduced differencing methods with complete asymptotic theory. A similar
approach has also been applied for the unpleasant case when nonparametrically generated
regressors enter in the nonparametric part of the model, see Rodŕıguez-Póo, Sperlich, and
Fernández (2005) who consider the problem of estimating a semiparametric triangular system.
For the estimation of the nonparametric part we use local linear smoothers, first introduced
by Lejeune (1985). See also Fan and Gijbels (1996) for a survey. However, to our knowledge
the theory has not been done for the more sophisticated local linear model with nonparamet-
rically generated regressors.

The varying-coefficient model seems to us a natural way to make price effects depend on
utility. A varying coefficients model retains the unit dimensionality of the nonparametric
problem, but allows price effects to be different for rich versus poor consumers. Lewbel and
Pendakur (2006) consider a parametric model similar to this, but force price effects to come
in linearly. Alternatively, one could consider an additive interaction model as in Sperlich,
Tjøstheim, and Yang (2002). Cleveland, Grosse and Shyu (1991) introduced the idea of
varying coefficients, Fan and Zhang (1999) and Cai, Fan and Li (2000) provide asymptotic
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theory for it. Again, they do not consider the case of generated regressors. Sperlich (2005)
provides some asymptotic theory for kernel density and Nadaraya-Watson estimators when
the explanatory variables are (nonparametrically) constructed, but these results cannot be
applied in our context. In this paper, we therefore develop the theory for the more complex
cases of local polynomial and varying-coefficient models. Actually, the asymptotic results we
provide are of general interest because they are applicable to any semi- or nonparametric
estimation problem with generated regressors in which local polynomial, partial linear or
varying coefficient models are used.

Typical resampling methods to make valid inference on nonparametric estimates are the
wild bootstrap and subsampling. Härdle, Huet, Mammen, and Sperlich (2004) provide wild
bootstrap methods for a large set of semiparametric models. Davidson and Flachaire (2005)
introduce a “tamed” version of the wild bootstrap that seems particulary interesting for our
context. Subsampling is extensively discussed in the book of Politis, Romano, and Wolf
(1999).

We note that one of the main criticisms of nonparametric methods is their lack of feasibility
in practice. Our method is straightforward to implement, is numerically robust, can handle
large data sets in reasonable time, and the results are easy to interpret. We use differencing
methods, that is ordinary least squares on transformed data, to get parametric estimates of
price effects. We use univariate local linear smoothers on transformed data to get estimates
of the nonparametric components of the model. The simplicity of this procedure makes this
methodology practical for empirical researchers. We implement the model with Canadian
price and expenditure data. The estimated expenditure-share equations exhibit quite a lot
of nonlinearity. We find that some expenditure-share equations are ‘S-shaped’ or even more
complex.

In addition to uncovering complexity in the curvature and rank of Engel curves, our approach
illuminates several aspects of how prices affect demand. First, although we reject symmetry
in the partially linear, or fixed-coefficients, version of our model, we do not reject symmetry
in the varying-coefficients version of the model. This suggests that rejection of the rationality
restriction of Slustky symmetry may be due to unduly restrictive incorporation of price effects
in typical parametric models. This explanation may supplement other recent explanations
having to do with the unobserved heterogeneity, see Lewbel (2001). Second, the additional
complexity of utility-varying price effects is statistically important. The fixed-coefficients re-
striction is rejected against a varying-coefficients alternative. This suggests that the standard
practice of using a single matrix of parameters in a parametric model to capture substitution
effects is not sufficient to capture actual behaviour. Third, the variation of substitution ef-
fects over utility may be economically important. We find that estimated consumer surplus
measures over a hypothetical price change are quite different between the models.

The rest of the paper is organized as follows. In Section 2 we introduce our model of cost and
demand. In Section 3 we provide the econometric theory for estimation of our demand system
and discuss efficiency. In Section 4 we discuss how the integrability conditions can be imposed
and tested, and the use of bootstrap. In Section 5 we allow the price effects to depend on
utility and provide consistent estimators for the resulting semiparametric varying coefficient
model. Again, the complete asymptotic theory is derived and integrability conditions are
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discussed. Section 6 presents an empirical example using Canadian microdata. Section 7
concludes and discusses some straight forward extensions such as the inclusion of demographic
effects. All proofs are deferred to the Appendix.

2 The Model

Denote log-prices as p = [p1, ..., pM ] and log total-expenditure as x. Define indirect util-
ity V (p, x) to give the utility attained when facing log-prices p with log total-expenditure
(log-budget) x, and log-cost lnC(p, u) as its inverse over x giving the minimum log total-
expenditure required to attain the utility level u when facing log-prices p. Denote expenditure-
share functions w = [w1, ..., wM ]. Note that since expenditure shares sum to 1, wM =
1−∑M−1

j=1 wj . Let {W 1
i , ..., WM

i , P 1
i , ..., PM

i , Xi}n
i=1 be a random 2M + 1 vector giving the

expenditure shares, log-prices and log-expenditures of a sample of n individuals.

2.1 Utility-Dependent Translog

Consider the ”Utility-Dependent Translog” (UTL) log-cost function

ln C(p, u) = u + p′β (u) +
1
2
p′Ap (1)

where u is an ordinal index of utility (that is, u can always be replaced by φ (u) where φ is
an unknown increasing monotonic tranformation).1 The restrictions

ι′β (u) = 1,

A′ι = 0M

are sufficient for homogeneity. The overbar on β is to emphasize that it is a function of utility,
rather than of an observable variable. The phrase ‘utility-dependent’ is to emphasize that
β (and later A) varies arbitrarily across utility. The word ‘translog’ is used because if β is
independent of utility, the model collapses to the (homothetic) translog model of Christensen,
Jorgensen and Lau (1971). Note that when β is linear, it collapses to the almost ideal case.

The dual indirect utility function V is defined by

u = V (p, x) $ x− p′β (u)− 1
2
p′Ap, (2)

but it cannot be solved for analytically except in special cases, such as the Almost Ideal case.
1The presence of u as the leading term in the cost function is not restrictive. Rather, it helps clarify that

indirect utility is (log) money metric at a base price vector p as will be discussed below.

At this point there are no demographic effects. However, they can be incorporated into the cost function

parametrically as follows. Denote a T− vector of demographic characteristics z where z = 0T for some

reference household type. Write the log-cost function as

ln C(p, u) = u + p′β (u) +
1

2
p′Ap + p′Γz.

Note that this formulation does not allow z to affect cost independently of prices. All the methods proposed

below may be adapted to this model.
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Applying Shepphard’s Lemma to the log-cost function (1) yields a vector of compensated
expenditure share equations ω(p, u) given by

ω(p, u) = β (u) + Ap , (3)

where
A = A′.

This compensated expenditure-share system is very simple, and if utility u were observed, it
would be estimable by standard semiparametric methods for partially linear models.

If the log-cost function were analytically invertible, we would substitute V in for u to derive
uncompensated share equations, but as noted above, the log-cost function (1) is not invertible
except in special cases. An alternative way to replace u with something observable is to
construct a real expenditure variable which holds utility constant, and substitute that into
the compensated expenditure share system. Set a reference vector of prices to unity, so that
log-reference prices are p = 0M , and note that indirect utility satisfies

V (p, x) $ x. (4)

This latter point is innocuous since we can always make utility (log) money metric at one
price vector.

Define “log-real expenditure”, xR = R(p, x), as the level of expenditure at p which yields the
same level of utility as x at p. It is implicitly defined by

V (p, x) $ V (p, xR), (5)

and given by
xR = R(p, x) = lnC(p, V (p, x)).

Combining (5) with (4) yields
V (p, x) $ R(p, x) (6)

That is, V and R are ordinally equivalent representations of preferences. However, R is car-
dinalised – its value is measured in base-price log-money units. Substituting xR = R(p, x)
into the compensated demand system yields a demand system which depends only on observ-
ables. Of course, since the solution for R uses analytical forms for both C and V , recovering
R is easy only if C is analytically invertible. However, in our model R can be estimated
numerically even if an analytical solution for V is not available.

2.2 UTL Almost Observable Demand System

The UTL does not have an analytical solution for log real-expenditure or for indirect utility,
and so it does not have an analytical solution for expenditure shares in terms of observable
variables. Instead, we use numerical methods to estimate log real-expenditure R at each price
vector.
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Since in equation (4) we have V (p, x) $ x, uncompensated demands, w(p, x), at base prices
are given by

w(p, x) = ω(p, V (p, x)) = β (V (p, x)) + Ap = β (V (p, x)) + 0M = β (x)

where β (x) ≡ β (V (p, x)) is a vector-function of (observable) log-expenditure rather than of
utility.

Define xN = N(p, x) as the log nominal expenditure function which gives the log-expenditure
necessary at p to give the same utility as x at p. It solves

V (p, xN ) = V (p, x) ⇔ (7)

xN = N(p, x) = x + p′β (x) +
1
2
p′Ap.

If the functions β and the parameters A are known, then N is known and given by (7). Log
real-expenditure is given by the inverse of N with respect to x at each p, i.e.

xR = R(·, x) = N−1(·, x). (8)

Thus, if the functions β and the parameters A are known, then N is given by (7), and R can
be found at each p by numerical inversion of N . If log-cost is increasing in utility at p, then
N is monotonically increasing in x, and is easily inverted numerically.2

Given xR = R(p, x), uncompensated shares over xR are given by substituting log real expen-
diture xR (which holds utility constant) for utility u in the compensated demand system:

w(p, x) = ω(p, V (p, x)) = ω(p, V (p, R(p, x)))

= β (u) + Ap, (9)

= β (V (p, R(p, x))) + Ap. (10)

Equivalently, we may write the shares as a function of p, xR :

w(p, xR) = β
(
xR

)
+ Ap. (11)

This uncompensated expenditure-share system is linear in prices and an unspecified function
of log real expenditure.

A nice feature is the clear interpretability we obtain here. We will call the βj(·) ‘Engel curve
functions’ because they indeed give the Engel curves at the reference price vector. We will
further call the elements of A ‘compensated price effects’ because they give the effect of price
changes on demand holding utility constant. Our structure is thus fairly simple: the demand
system is characterized by a set of Engel curve functions and a matrix of compensated price
effects.

2Cost is locally weakly increasing in p if and only if expenditure shares are weakly greater than zero.

However, the parametric component Ap guarantees violations of positivity with p large (small) enough when

A 6= 0. Thus, we cannot restrict the UTL to satisfy increasingness. However, no commonly used parametric

demand system is globally increasing either. Since C cannot be restricted to global increasingness in u, one

might be cautious about evaluating N at price vectors very far from the observed price vectors.
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Note finally that log real expenditure xR is an interesting tool for welfare economics: the cost
of living index I for a person facing prices p compared to p is defined by

ln I(p, x) = x−R(p, x) = x− xR.

It varies with x unless preferences are homothetic (which in this model requires β independent
of u).

3 Estimation

We begin by assuming the existence of a consistent predictor for the log real-expenditure
of every individual in the sample. Then, we show how to estimate the utility-dependent
translog demand system given by (11) with a constructed regressor in the nonparametric
component. This yields an estimator for A with optimal convergence rate and an estimator
for β. Following this, we discuss different consistent initial predictors for log real-expenditure
which satisfy the conditions required for consistency of the estimated demand system and for
efficiency of the estimator for A.

3.1 Estimation of the linear part

To estimate matrix A
√

n- consistently and efficiently, we discuss two approaches: the kernel
smoothing estimator of Rodŕıguez-Poó, Sperlich, and Fernández (2005) and the differencing
estimator of Yatchew (1997).3 Both approaches are actually based on the same idea: differ-
encing out the nonparametric vector-function β. It is convenient to describe the estimation
equation-by-equation. We face the data generating process

W j
i = βj (R(P i, Xi)) + ajP i + εj

i , j = 1, . . . , M (12)

where aj are the rows of A, so that A =
[
a1| ...| aM

]
, the disturbances εj

i , i = 1, . . . , n are
i.i.d. with mean zero and variance function σjj(x,p) for all j, being bounded from above.

Taking expectations, we may write

w(p, x) = E[W |R(p, x), p] = β (R(p, x)) + Ap

with β nonparametric. If the structure of R is ignored we would get a regression problem

E[W |R(p, x), p] = γ (p, x) + Ap

where γ is an M−vector function of (p, x). Clearly, γ and A are not nonparametrically
identified, so we cannot estimate A by applying a standard partial linear model that ignores
the structure of R. Instead, we first replace R(p, x), i.e. xR by a predictor x̂R, and then
estimate A and β as in Rodŕıguez-Poó, Sperlich, and Fernández (2005) or Yatchew (1997).
Define the a compact set XR including the neighborhood of all xR of interest. For any
approach we will use the following assumptions:

3We do not suggest that the two approaches we outline are exhaustive. Given a consistent predictor for

log real-expenditure, one might also use the methods proposed by Speckman (1988) and Robinson (1988).
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[A1] The vector of error terms ε = (ε1, . . . , εM )T has mean zero, and the covariance function
{σlk(x,p)}M

l,k=1 = Cov[εεT |x,p] = Σε(x,p) is bounded and Lipschitz continuous in each
element.

[A2] The (marginal) density f(·) of XR is uniformly bounded away from zero and infinity
and has continuous second derivative on XR.

[A3] The functions βj(·) have bounded and continuous second derivatives on XR.

The idea of Ahn and Powell (1993) or Rodŕıguez-Poó, Sperlich, and Fernández (2005) is
to ‘smoothly’ difference out the contribution of βj using kernel weights on the distances.
Consider for each j the sample

wj
i − wj

k = βj(xR
i )− βj(xR

k ) + aj(pi − pk) + εj
i − εj

k ,∀ i 6= k .

Weighting inversely to the distance |xR
i − xR

k | will cancel the contribution of βj due to its
smoothness. Our estimator is given by

ÂRSF = Ĥ−1
PP ĤPW (13)

ĤPP =

(
n

2

)−1 n∑

i=1

n−1∑

k=i+1

(pi − pk)(pi − pk)
T v̂ik

ĤPW =

(
n

2

)−1 n∑

i=1

n−1∑

k=i+1

(pi − pk)(wi −wk)T v̂ik

where v̂ik = Kh(x̂R
i − x̂R

k )

Here, Kh(v) = 1
hK(vh−1) is a kernel function. We further assume

[R1] The kernel K is bounded, symmetric, compactly supported, integrates to one, with first
moment equal to zero and a continuous second derivative.

[R2] The prices P j have nondegenerate conditional distributions given XR and X, respec-
tively, with E[P j |XR = xR] = gj(xR), and E[Cov(P |XR)] = ΣP |XR . The functions gj(·)
have bounded first derivatives on XR.

[R3] For bandwidth h we need nh6 →∞ and nh8 → 0.

We will need a consistent (nonparametric) predictor for all xR from the range XR:

[X1] There exists a consistent predictor for each xR ∈ XR so that

x̂R
i = R(pi, xi) + BX(xi, pi) + ui , ui := u(xi,pi) ,

where BX(·) is the bias, u(x,p) the stochastic error with E[u(x,p)] = 0 and variance function
σ2

X(x,p). Both, BX and σX are Lipschitz continuous in x and converge to zero for n going
to infinity. Further, E[uiukσX(xi, pi)σX(xk, pk)] = O( 1

n) uniformly for all i 6= k.

Note that these assumptions are fulfilled by any simple kernel estimator. As both xR and
the conditional mean function of W come from related data generating processes, we have to
allow for correlation between the stochastic errors ui and εi from equation (12). These as-
sumptions are not restrictive. Actually, they even allow for the worst case were one estimates
xi nonparametrically from

xR
i = E[xR

i |yi] + εj
i
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for some known instruments yi and for any j. I.e. here, the errors in both regression problems
are perfectly correlated. Therefore these although rather technical assumptions again are
”trivial”:

[X2] For all j = 1, . . . , M we have E[ur
i (ε

j
k)

s] = O( 1
nr ) or smaller ∀ i, k, s = 1, 2, r = 1, 2;

and E[uγ
x] = σγ

X(x,p) = o( 1
n) for γ > 2. Finally, the third cumulant E[εj

i ε
j
kui] is assumed to

be of order o( 1
n). All these rates are supposed to hold uniformly for all i, k.

In addition, for the efficient estimation of the parametric part we need

[X3] For all xR
i , i = 1, . . . , n there exist predictors x̂R

i such that supi|x̂R
i − xR

i |h−2 = op(1)
for the bandwidths given in [R3].

Now, we can establish the asymptotics. As they follow from the theoretical results of
Rodŕıguez-Poó, Sperlich, and Fernández (2005) we state them just in terms of a Corollary:

Corollary 1 Under assumptions [X1] - [X3], [A1] - [A3], [R1] - [R3] we have for each row
aj of A as n goes to ∞

√
n

(
âj

RSF − aj
)
−→ N

(
0M , E[Σ−1

P |XR ]E[PXσjj(X, P )P T
X ]E[Σ−1

P |XR ]
)

,

where PX := P − E[P |XR]. The covariance matrix between vector aj and ak is

E
[
Σ−1

P |XR ]E[PXσjk(X, P )P T
X ]E[Σ−1

P |XR

]
,

for all k, j = 1, . . . , M .

Note that in this corollary as well as in the following corollaries and theorems our assumptions
are somewhat stronger than necessary for convenience and clarity.

The suggested estimator for A is asymptotically efficient. Nevertheless it is worth consid-
ering an alternative that may be in practice superior due to its simplicity. Yatchew (1997)
proposes an approach which does not employ smoothing. First, we order the observations
{wi, x̂

R
i ,pi}n

i=1 by x̂R
i . Then consider for each equation j = 1, . . . , M the differences

m∑

i=0

diw
j
k−i =

m∑

i=0

diβ
j(x̂R

k−i) +
M∑

j=1

m∑

i=0

dip
j
k−iaj +

m∑

i=0

diε
j
k−i , k = m + 1, . . . , n

with differencing coefficients d0, d1, . . . , dm fulfilling

m∑

i=0

di = 0, and
m∑

i=0

d2
i = 1 . (14)

Optimal differencing weights can be found e.g. in Hall, Kay, and Titteringen (1990) and in
Yatchew (2003). Again, the contribution of βj is cancelled out due to its assumed smoothness.

Assume that

[Y1] The data are ordered such that 1
n

∑n
i=1 |x̂R

i − x̂R
i−1|2 = O(n−2(1−δ)) for δ positive and

arbitrarily close to zero.
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Define “optimal differencing weights” by minimizing
∑m

k=1(
∑

l dldl+k)2 under the constraints
(14) (see Hall, Kay and Titterington (1990)). Then, define the ‘differenced’ vectors and
matrices, ∆y =

∑m
k=0 dkyi−k with y being W or P . Finally, apply ordinary least squares to

the differenced data:
ÂY = [∆P∆P T ]−1∆P T ∆W (15)

Again, as the asymptotics can be derived following mainly the lines of Yatchew (1997,2003),
we state them as a Corollary:

Corollary 2 Under assumptions [A1] - [A3], [X1] - [X3], [Y1], and [R2] it holds that for
each row aj of A we have for n going to ∞

√
n

(
âj

Y − aj
)
−→ N

(
0M , {1 +

1
2m

}E[Σ−1
P |XR ]E[PXσjj(X,P )P T

X ]E[Σ−1
P |XR ]

)
,

where PX := P − E[P |XR] . The covariance matrix between vector aj and ak is

{1 +
1

2m
}E[Σ−1

P |XR ]E[PXσjk(X, P )P T
X ]E[Σ−1

P |XR ] .

The two approaches are similar: in Yatchew’s approach the kernel weights were substituted
by the so called differencing weights, and the parameter m corresponds to bandwidth h in
the first approach. However, in Yatchew’s approach we can see clearly how the differencing
affects the variance of our estimate.

3.2 Estimation of the nonparametric part

The utility-dependent translog demand system (11) is comprised of the functions β and the
fixed matrix A. Given consistent initial predictors for log real-expenditure, we show above
how to estimate A consistently and efficiently. An efficient nonparametric estimator for β(xR)
may be obtained by standard methods if xR

i is known and we have a
√

n -consistent estimate
of the matrix A. In this case, we we simply apply a local estimator on the M one-dimensional
regression problems

W j − âjP = βj(XR) + εj j = 1, . . . , M.

However, in our case, we have only a consistent predictor xR
i , and so we must take into

account the bias and randomness of the x̂R
i when discussing the asymptotics of an estimator.

Let Kh(v) = 1
hK(vh−1) again be our kernel function with bandwidth h. We denote estimators

for βj and its first derivatives by θ1(xR) = βj(xR), θ2(xR) = ∂
∂vβj(v)|v=xR and employ a local

linear estimator:

θ̂(xR) = argminθ

n∑

i=1

{
(wj

i − âjpi)− θ1 − θ2(x̂R
i − xR)

}2
Kh(x̂R

i − xR)

Having predictors in the kernel as well as inside the square sum complicates the asymptotic
theory. Since we are only interested in the levels of βj , we concentrate here only on the
asymptotic distribution of β̂j(v). The proof of the following theorem is given in the appendix.
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Theorem 3 We assume that [A1] - [A3] and [R1] hold. Further we assume [X1] - [X2]
and that BX = o(h), and σ2

X = O( 1
ngn

) for a gn such that 1
ngn

is o(h2) (all uniformly). We
assume that there exists x0,p0 such that xR = R(p0, x0). Further, for n → ∞, nh and h−1

go also to ∞. Then, with β(xR) := {βj(xR)}M
j=1 and β̂(xR) := {β̂j(xR)}M

j=1 it holds for xR

interior point of XR

√
(nh ∧ ngn)

{
β̂(xR)− β(xR)−Bβ(xR)

}
−→ N

(
0, Σβ(xR)

)

with bias

Bβ(xR) =
h2

2
µ2(K)β′′(xR)−BX(x0,p0)β′(xR) ,

where β′(xR), β′′(xR) are the vectors of the first, respectively second, derivatives. Further,
recall that f(·) denotes the marginal density of XR, then with µl(K) =

∫
vlK(v)dv it is

1
nh ∧ ngn

Σβ(xR) =
1

nh
f−1(xR)||K||22Σε(xR)⊕ σ2

X(x0,p0)β′2(xR) ,

where ⊕ means “element wise” summation.

The newly introduced parameter gn corresponds to a smoothing parameter in the prediction
of xR. In case of using kernel methods and gn as a bandwidth it is clear that, without bias-
reducing methods, the bias BX is of rate g2

n and (as assumed in the theorem), the variance
σ2

X is of rate 1
ngn

. Thus, the assumptions Bx = o(h) and σ2
X = o(h2) are trivially fulfilled.

From Sperlich (2005) we can also derive the asymptotic distribution of the local constant
estimator for β. However, since the local linear estimator is almost as easy to implement as
the local constant one, but is known to be more efficient (see Lejeune (1985) and Fan and
Gijbels (1996)), we use the local linear version.

We are also interested in whether or not we can improve the estimation of β by using iteration.
As we have already seen in Subsection 2.2 and we will recall in the following subsections, log
real-expenditures xR

i can be recalculated having estimates of β and A. There are two purposes
for iteration: first, one can use iteration to generate model-consistent results. Here, if β̂ and
Â are iterated with x̂R

i , the estimates of each may ‘settle down’ in such a way that β̂ and Â
imply x̂R

i and x̂R
i implies β̂ and Â. Such estimates may be called ‘model-consistent’, and have

the advantage that either set of estimates completely characterises the model: that is, one
could present empirical results on either β̂ and Â or on x̂R

i without any loss of information.

A second purpose for iteration is to try to reduce or eliminate the influence of the pre-
estimation of xR. The Corollaries and Theorem above hold for any predictor of log real-
expenditure fulfilling fairly weak conditions, including those which result from iteration.
Thus, iteration does not reduce the efficiency of the estimator. One could try to estab-
lish conditions on the model enabling us to apply a contraction result, which would show
that iteration would give an asymptotically efficient estimate. However, such an exercise is
quite difficult and beyond the scope of the present paper. We are actually more interested
in the practical question as to whether or not the initial prediction affects the final estimates
in real data. From the results given above, we see that after iteration the asymptotic dis-
tribution of β̂ only changes in the additive term containing the bias and the variance of the
predictor. We may assess the contribution of these terms via a simple subsampling approach
as follows.
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• (i) Predict the n log real-expenditures xR
i for the full sample using initial estimates of

β and A which come from a random subsample of the data.

• (ii) Estimate with them and the full sample the function β and A, recalculate with
them the xR

i , and iterate this until convergence.

• (iii) Repeat steps (i) and (ii) B times to determine the distribution of the final estimates
of β, A, and the log real-expenditures xR

i .

If the final estimates do not vary over the different subsamples, the initial prediction has little
impact on the final estimates. In this case, iteration yields an efficient estimator. Below, we
will show that the iterated estimates are roughly independent of the initial pre-estimates, and
therefore suggest using iteration in practise. The sample distribution for the nonparametric
estimates should be determined by resampling (bootstrap) methods, which we discuss in
Section (6).

3.3 Consistent initial estimator for x̂R
i

The results above are all based on the assumption that we have predictors for the xR
i , i =

1, . . . , n fulfilling conditions given in [X1]-[X3] in Theorem 3. Our results are rather general
holding for any consistent predictor fulfilling some minimal conditions. In this paper we treat
only the “worst case”, i.e. that we do not have any additional information or data to predict
the real expenditure than the information and data we have to estimate the demand system.
We show that even then our method can be applied as will be seen also in our real data
application.

To this aim we first show the behavior of an initial estimate of xR
i computed from initial

estimates of β and A. Then, we discuss different approaches to initial estimates of β and A
which satisfy [X1]-[X3] and are not too burdensome.

Our initial estimators for xR
i will use initial estimates of β and A that we will call β0 and

A0. Define N0 as the log-nominal expenditure function using these initial estimates β0 and
A0:

N0(p, x) = x + p′β0(x) + p′A0p.

Then define R0 as the inverse with respect to x of N0, so that

R0(·, x) = N−1
0 (·, x),

and use
x̂R

i = R0(p, xi)

as the (initial) predictor for xR
i .

Given monotonic increasing costs in utility, we have increasingness of R(p, x) and N(p, x) in
x for each p, so that we can invert N and derive the convergence rate. For each p fixed, and
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t = N̂(p, x), R(p, t) = N−1(p, t), R̂(p, t) = N̂−1(p, t)

sup
t
|R̂(p, t)−R(p, t)| = sup

u
|R̂{p, N̂(p, u)} −R{p, N̂(p, u)}|

sup
u
|u−R{p, N̂(p, u)}| = sup

u
|R{p, N(p, u)} −R{p, N̂(p, u)}|

≤ sup
t
| d
dt

R(p, t)| sup
u
|N(p, u)− N̂(p, u)|.

This implies that x̂R
i := R̂(pi, xi) inherits the convergence rates of N̂(·, ·) which itself inherits

the convergence rates of the initial estimates β0(·) and Â0.

3.3.1 Initial Estimator for β

Recall that p = 0M , which implies R(p, x) = x, and that for observations facing p, xR
i = xi

and Ap = 0M . A consistent initial estimator for β(xR), denoted β0(xR), may be obtained
by nonparametric estimation of expenditure shares on log-expenditure using only those ob-
servations facing p. Since

E[Wi|Xi = x,Pi = p] = β(x),

we may construct the following consistent initial estimator for β:

β0(x
R) = E[Wi|Xi = x,Pi = p].

This estimator may be constructed either by estimating the univariate nonparametric Engel
curve at p, using only the N0 observations which face p, or by estimating the nonparametric
demand system using all n observations facing all price vectors, and evaluating this demand
system at p = p. While the latter approach works with any stochastic environment for the
process generating {Pi, Xi}n

i=1, the former approach works only in an environment with many
individuals facing the same price vector, and not in an environment with fully individual-level
prices (such as unit values).

3.3.2 Initial Estimator for A

First of all, note that the matrix A is the matrix of log-price derivatives of compensated
expenditure share equations. In general, the matrix of compensated semi-elasticities, Υ(p, x),
may be expressed in terms of observables as:

Υ(p, x) = ∇pw(p, x) +∇xw(p, x)w(p, x)′.

Given our model, Υ(p, x) = A is a matrix of constants. In the following we discuss three
ways to proceed.

Unrestricted Estimator via averaging: Following Haag, Hoderlein and Pendakur (2005),
one may easily estimate Υ(p, x) via nonparametric methods using local polynomial modelling
of the marshallian expenditure-share system. Methods like these yield estimated compensated
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semi-elasticities which depend on p, x, which we denote Υ̂(p, x). A consistent estimator for
A is thus given by

A0 =
1
n

n∑

i=1

Υ̂(Pi, Xi). (16)

Here A0 may or may not be symmetric.

We note that Lewbel (2001) shows that Υ̂(p, x) is only a consistent estimate of Υ(p, x) if
the disturbance terms on the right-hand side of the regression are not important behavioral
parameters or if they satisfy rather complex covariance conditions that are hard to verify in
practice. The reason is that although ∇pw(p, x) may be consistently estimated via nonpara-
metric methods in the presence of unobserved behavioral heterogeneity, ∇xw(p, x)w(p, x)′

contains a cross-product of such heterogeneity which makes consistent estimation of this term
difficult.

Symmetry-Restricted Estimator via averaging: Crossley and Pendakur (2005) and
Hoderlein (2005) propose the following symmetry-restricted estimator of the average com-
pensated semi-elasticity matrix.

Υ(p, x) + Υ(p, x)′ = 2Υ(p, x)

= ∇pw(p, x) +∇pw(p, x)′ +

∇xw(p, x)w(p, x)′ + w(p, x)∇xw(p, x)′

= ∇pw(p, x) +∇pw(p, x)′ +∇x

(
w(p, x)w(p, x)′

)
.

Given nonparametric estimates ∇̂p w(p, x) and ∇̂x(w(p, x)w(p, x)′), we construct

Υ̂(p, x) =
1
2

(
∇̂pw(p, x) + ∇̂pw(p, x)′ + ∇̂x

(
w(p, x)w(p, x)′

))
,

and estimate

A0 =
1
n

n∑

i=1

Υ̂(Pi, Xi) . (17)

Because ∇x (w(p, x)w(p, x)′) can be consistently estimated regardless of the structure of
unobserved heterogeneity, this symmetry-restricted version of Υ̂ is not subject to Lewbel’s
(2001) critique. We will come back to the symmetry restriction in the next section when
discussing the different aspects of integrability.

Note that for both estimators, (16) and (17), for the matrix of constants A, we use high-
dimensional nonparametric pre-estimators that have very slow convergence rates. Fortu-
nately, the averaging in the estimates of A0 reduces the variance such that with an under-
smoothed pre-estimate Υ̂ we end up with a rate that easily fulfills the rates necessary to
satisfy [X1] - [X3], the assumptions used in Theorem 3. This method of reducing the dimen-
sionality to get efficient convergence rates is well known in the nonparametric literature for
marginal integration estimators, see e.g. Newey (1994), or Hengartner and Sperlich (2005)
for an improved version of this estimator.
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Parametric rates for A with M-demands: An alternative approach to constructing
an initial estimator for A is to use the ‘M-demand’ approach proposed by Browning (2005).
Assume that at least one good has share equations which are monotonic in utility (xR ),
and denote a good in this class as good 1. For example, food-at-home shares are known to
be decreasing in log-expenditure. Then, we may express expenditure shares w2, ..., wM−1 as
functions of p, w1, rather than as functions of p, xR. First, using the initial estimate of β for
good 1, β1

0 , invert w1 around x to get

xR = (β1
0)−1

(
w1 − a1p

)

where a1 is a row-vector comprised of the first row of A. Second, substitute this expression
for xR into the expenditure shares w2, ..., wM−1 using initial estimates βj

0, j = 2, ..., M − 1,
to get M-demands:

wj(p, w1) = βj
0

(
(β1

0)−1
(
w1 − a1p

))
+ Ap, (18)

j = 2, ..., M−1. Taking β0 as given, the M-demand system ( 18) may be estimated via GMM
to get a consistent initial estimate for A, which we denote A0.

If w1 is measured with error, or if it contains additive preference heterogeneity, then the
M-demand system above suffers from an endogeneity problem. However, if we take βj

0 and
(β1

0)−1 as given, the endogeneity is inside a known function.

4 Inference and Estimation under Integrability

4.1 Bootstrap Confidence Bands

Our aim is to construct symmetric confidence bands around the nonparametric function
estimate βj . For the construction of uniform confidence bands around β̂j we first define the
statistic

Sj = supxR |β̂j(xR)− βj(xR)|Σ̂−0.5
β jj (xR) , j = 1, . . . , M,

where Σ̂0.5
β jj(x

R) is the estimated standard deviation of β̂j at point xR, compare Theorem 3.
Following Härdle, Huet, Mammen, and Sperlich (2004) we determine the distribution of Sj

via wild bootstrap. To this end we calculate

S∗j = supxR |β̌j(xR)− E∗ [
β̌j(xR)

] |Σ̌−0.5
β jj (xR) ,

where the ˇ indicates estimates from bootstrap samples, and E∗ refers to the expectation
over the bootstrap estimates. Then, the confidence bands are given by

[
β̂j(xR)− s∗j Σ̌

0.5
β jj(x

R) , β̂j(xR) + s∗j Σ̌
0.5
β jj(x

R)
]

at each point xR, where s∗j is the (1− α) quantile (α ∈ (0, 1)) of S∗j .

In Section 3 we have seen how to take into account the variance caused by the prediction of
the xR

i , i = 1, . . . , n. In our application it actually does not influence the distribution of the
final estimates. Therefore, the bootstrap samples can be generated with our estimates given
the sample {x̂R

i ,pi}n
i=1 for j = 1, . . . , M by

wj
i

∗
= β̂j(x̂R

i ) + âjpi + εj
i

∗
,
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where the εj
i

∗
reflects the covariance structure (between the M different equations) of the

original errors. However, when it turns out that the prediction of the xR
i affects the final

estimate in the particular real data problem, one would start the bootstrap already from
the prediction of the xR

i (can also be done via subsampling, see Politis, Romano, and Wolf
(1999).

For the wild bootstrap, we propose the Radamacher distribution where the bootstrap error
vector ε∗i = eiµi with ei is the sample residual vector, and µi is a scalar-valued independent
random variable satisfying P [µi = 1] = P [µi = −1] = 0.5, see Davidson and Flachaire (2005)
for details and particular advantages of this method. Other bootstrap methods are certainly
thinkable, too.

4.2 Homogeneity

Homogeneity is easily satisfied in this context, by normalizing prices with respect to pM .
As noted in the discussion of the cost function (1), homogeneity is satisfied if and only if
ι′β (u) = 1 and Aι = 0M . Since only M − 1 independent expenditure share equations are
estimated, the summation restriction on β only affects the calculation of N and R, and does
restrict the estimation.

The linear restriction on the parameters A can be implemented in various ways, normalizing
prices being one of them. Denote the k’th normalized price as p̃k = pk − pM and let p̃ =
[p̃1, ..., p̃M−1], and denote P̃ k

i = P k
i − PM

i and P̃i = [P̃ 1
i , ..., P̃M−1

i ]. Denote the Ã as the
M − 1 by M − 1 upper-left submatrix of A, and denote β̃ as the M − 1 vector function
giving all but the last element of β, and W̃ and w̃ defined analogously as the first M − 1
expenditure shares and share functions. Log nominal expenditure over normalized prices is

N(p̃, x) = x + p̃′β̃ (x) + pM +
1
2
p̃′Ãp̃

and log real expenditure is still its inverse with respect to x at each p̃. Then, the homogeneity-
restricted model analogous to (11) is given by

E[W̃|XR = xR, P̃ = p̃] = β̃(xR) + Ãp̃. (19)

This model may be estimated via the techniques outlined above.

A goodness-of-fit test for homogeneity could compare estimates from the unrestricted model
(11) to the restricted model (19) following Aı̈t-Sahalia, Bickell and Stoker (2001) or Haag,
Hoderlein and Pendakur (2005). However, in our semiparametric partial linear model we can
not only avoid the curse of dimensionality, the test on homogeneity does even reduce here to
a simple parametric test. To see this just note that if the rows of A sum to zero, the β will
automatically sum up to one by definition (being then simply the sum over all M expenditure
shares). Therefore, it is sufficient to consider the null hypothesis

H0 : Aι = 0M

against the alternative that at least one of these equations does not hold. This null hypoth-
esis can be checked by a Wald-type-test at a parametric rate since the variance-covariance
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structure is explicitly given in Corollary 1 and Corollary 2 respectively. Unfortunately, the
variance-covariance matrix has to estimated nonparametrically. Although it can be shown
that this is theoretically valid, for practical applications one should use bootstrap or sub-
sampling. If the real data sample is relatively small, these resampling methods should also
be used to determine the critical value of the test statistic. The estimation of our model
under the null hypothesis to get bootstrap samples under H0 – necessary to get the statistic’s
null distribution – has been discussed above. Further, we recommend undersmoothing the
nonparametric part β(·) so as to avoid distorting the bootstrap with a nonparametric bias
term.

4.3 Symmetry

Symmetry is also easily imposed in this context. The Slutsky Matrix S is given by

S = A + wwT − diag{w} . (20)

Symmetry is satisfied if and only if A is symmetric. To get an estimate Ã (A) that is
symmetric we just have to apply a linear estimator under linear cross-equation restrictions
in the partially model. Thus, for example, in equation (15), we would include the restriction
Ã = Ã′ (A = A′ ).

If we first estimate A without the symmetry restriction, we may test symmetry via a para-
metric hypothesis test for

H0 : aj
i = ai

j ∀ i, j = 1, . . . ,M vs H1 : aj
i 6= ai

j for at least one i 6= j = 1, . . . , M

with A = {aj
i}M

i,j=1. Given Theorems 1 and Theorem 2, we have the covariance matrix of the
vector of all differences of interest,

α :=
(
a2

1 − a1
2, a

3
1 − a1

3, · · · , aM
1 − a1

M , a3
2 − a2

3, · · · , aM
M−1 − aM−1

M

)T

which we denote Σα. Then our test statistic is αT Σ−1
α α that under H0 converges to a chi-

square distribution with (M − 1) (M − 2) /2 degrees of freedom, and under H1 goes to infinity.
It is obvious that also this can be written as a Wald-type-test as the test for homogeneity,
applying the same variance-covariance matrix. Thus, as above, the variance-covariance matrix
has to estimated nonparametrically and we therefore again recommend using bootstrap or
subsampling which can also be used to find the critical values of the test statistic.

4.4 Concavity

Concavity is satisfied if the Slutsky matrix S is negative semidefinite. Since wwT − diag{w}
is negative definite, negative semidefiniteness of A is sufficient for concavity. However, re-
stricting A to be negative semidefinite is overly restrictive.

Alternatively one may search within any reasonable matrix-norm for the negative semidefinite
matrix closest to the estimate of S. As long as this matrix norm is consistent with the
objective functions used for the estimation of A and w, this does not lead to any efficiency
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loss. The degree of difficulty of implementation depends strongly on the matrix norm we
choose.

A test could then be constructed on the difference between the unrestricted estimate and the
final, negative semidefinite estimate. A reasonable weighting which accounts for the variance-
covariance structure S is difficult to construct and would depend on many nonparametric
auxiliary estimates, so the practical application of this would be difficult. Thus, it may be
preferable to use a simple subsampling based test, which would not require us to generate
bootstrap samples based on the projection of the unrestricted Ŝ onto its negative semidefinite
analog.

5 Varying Price Effects

So far our log-cost function (1) has first-order price effects which depend on utility, but
second-order price effects which are independent of utility. A natural extension is to let the
second-order price effects depend on utility, as in the following:

lnC(p, u) = u + p′β (u) +
1
2
p′A(u)p. (21)

Here, A is a matrix-valued function of utility u. Indirect utility is defined by

u = V (p, x) $ x− p′β (u)− 1
2
p′A(u)p, (22)

which is log-money-metric at base prices, because

V (p, x) $ x.

The compensated expenditure-share system corresponding to (21 ) is given by Shepphard’s
Lemma as

ω(p, u) = β (u) + A(u)p,

and at a vector of base prices is equal to

ω(p, u) = β (u) .

Uncompensated expenditure-shares at base prices are given by

w(p, xR) = β (x) ,

because if p = p, then xR = x.

Since A is a an unrestricted function of u, we may create the matrix-valued function A
(
xR

)

as
A

(
xR

)
= A(u) = A(V (p, x)) = A(V (p, xR))

At price vectors other than p = p, the observable expenditure-share functions w are given
by

w(p, xR) = β
(
xR

)
+ A(xR)p. (23)
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As in the simpler model, we may solve for N as

V (p, xN ) = V (p, x) ⇔ (24)

N(p, x) = x + p′β (x) + p′A(x)p,

and if the functions β and A are known, then N is known, and xR = R(p, x) solves V (p, x) =
V (p, xR) as in (5), and R(p, x) is given by the inverse of N with respect to x.

Note finally that the nice feature of having a clear interpretability is shared with the simpler
partial linear model: the demand system is again characterized by a set of Engel curve
functions, i.e. the βj(·) and a matrix of compensated price effects, A(·).

5.1 Estimation of the Model with varying Price Effects

We start by assuming that we can get some consistent predictors for the log-real expenditures
XR

i , as we did in the partial linear model with constant A. The estimators defined above do
not help here. Instead, notice that the model

E[W|p, xR] = β
(
xR

)
+ A(xR)p (25)

can be interpreted as a varying coefficient model which is linear in p but with coefficients
that vary with xR. For p , xR observed these models are well studied in the non- and
semiparametric literature, see e.g. Cleveland, Grosse and Shyu (1991), or Fan and Zhang
(1999). We need to modify such models to allow for a constructed regressor, the predictor of
xR.

As above, we use a local linear model to get estimates of the functions βj and aj =
(aj

1, a
j
2, . . . , a

j
M ) at a given point xR

0 . For all j minimize over the scalars βj
0 and βj

1 and
the vectors aj

0 and, aj
1 the kernel-weighted sum of squares

n∑

i=1

[
W j

i − βj
0 − βj

1(x̂
R
i − xR

0 )−
{
aj

0 + aj
1(x̂

R
i − xR

0 )
}′

Pi

]2

Kh(x̂R
i − xR

0 ) (26)

and then set β̂j(xR
0 ) := βj

0, âj(xR
0 ) := aj

0 for all j, k. Here, Kh(·) is a kernel function defined
as before.

For the ease of notation let us set log-prices P0
i ≡ 0M for all i, and aj

0(x
R) := βj(xR). In

addition to the assumptions of Theorem 3 we need

[V1] E[(pj)2s] < ∞ for some s > 2, j = 0, . . . , M . Further, the second derivative of rjk(xR) :=
E[pjpk|xR] is continuous and bounded from zero on XR the for all j, k.

Further, we replace [A3] now by

[V2] The second derivatives of A(xR) are continuous and bounded on XR for all j, k.

Then, we can state the following result for which the proof again is given in the appendix.
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Theorem 4 Assume the same conditions as in Theorem 3 without [A3], but adding [V1],
[V2]. Define the estimators as in (26), and set αk :=

(
ak

0, a
k
1, · · · , ak

M

)T (xR) for k = 1, . . . , M .
Then it holds

√
(nh ∧ ngn)

{
α̂k − αk −Bk(xR)

} −→ N
(
0, Σαk

(xR)
)

.

with bias

Bk(xR) =
h2

2
µ2(K)α′′k −BX(x0,p0)α′k ,

where α′k, α′′k are the vectors of the first, respectively second, derivatives in xR.

The covariance structure is given by

1
nh ∧ ngn

Σαk
(xR) =

1
nh

f−1(xR)||K||22ΩΣεk,k(xR)⊕ σ2
X(x0,p0)α′2k ,

where Ω is the inverse of Ω−1 := E
[
(P 0, P 1, . . . , PM )T (P 0, P 1, . . . , PM )|xR

]
and Σεk,k(xR)

is the (k, k)’th element of Σε(xR).

Certainly, the statement could have been formulated the same way for the vector γj =
(a1

j , a
2
j , . . . , a

M
j ). For the unrestricted estimator the covariance structure is then given by

1
nh

f−1(xR)||K||22Ωj,jΣε(xR)⊕ σ2
X(x0, p0)γ′2j

for j = 0, . . . , M

Given reasonable predictors for xR
i , one can estimate the varying coefficient version of the

utility-dependent translog demand system. However, as we show in the next subsection, it
is much harder to create good predictors for xR

i given the structural model of cost in this
case. An alternative to methods outlined above can be found in Cai, Fan, and Li (2000) who
propose a Maximum Likelihood approach. Although such an approach requires specification
of the conditional distribution of the observed shares, it offers a relatively easy model check
which we will describe below.

Regarding the value of iteration, we refer to the discussion in the preceding section as the
arguments do not change between the fixed- and varying-coefficients versions of our model.

5.1.1 Consistent initial estimator for x̂R
i

As in Subsection 3.3 we have to find consistent predictors x̂R
i for all i. Again, we proceed by

plugging initial estimates of β and A and into the function N(p, x), and then inverting around
x to get R(p, x) which defines our predictor for real expenditure. We may get consistent
initial estimators for β(xR) we as in Subsection 3.3. However, for A we must use a different
approach.

In the varying coefficients model, the matrix A of compensated semi-elasticities depends
only on xR and not on prices. Although xR = R(p, x) is a complicated function of prices and
expenditure in general, recall that at the base price vector, R satisfies R(p, x) = x. Thus,
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we again can obtain a consistent estimator for the matrix-valued function A similar as in the
simpler case when it was assumed to be constant:

A0(xR) = Υ̂(p, x).

Here, however, there is no averaging, so this estimator inherits the slow convergence rate of
the nonparametric pre-estimator Υ̂. Again we can either calculate the symmetry-restricted
or the unrestricted estimator for Υ to get our A0(xR). Then, as in Section 3.3 we can derive
the convergence rate of the predictors x̂R

i . Finally, notice that here, the initial estimator for
the matrix function A cannot be obtained via the M-demand strategy.

5.1.2 Testing and Bootstrap Confidence Bands

For A independent of xR, it is straight forward to impose restrictions coming from integra-
bility, and inference can be derived directly from the asymptotic theory. In contrast, when
we allow A to be nonparametric in the direction of real expenditure, imposing integrability
and doing statistical inference is much more complicated. Therefore, a first step should be
to check whether such an effort is justified. This means to test A for significant deviations
from being constant. This can be done either by a bootstrap (or subsampling) based test
similar to those proposed in Härdle, Huet, Mammen and Sperlich (2004) or, as mentioned
above based on a Likelihood approach as suggested in Cai, Fan and Li (2000). Note that the
latter mentioned article treats explicitly this testing problem. Since our problem is “simply”
an extension to the case when generated regressors are included, we skip further discussion
here.

When the coefficient matrix turns out to depend significantly on xR, testing symmetry can
be done the way it is suggested by Haag, Hoderlein and Pendakur (2005). The advantage of
starting with our model is the strong reduction of dimensionality we yield, the disadvantage
is the inclusion of a nonparametrically generated regressor. Asymptotic theory tells us that
our approach is preferable but unfortunately, in practice, i.e. for finite samples we do not
know.

Homogeneity and concavity, always understood as “local”, can be imposed the same way as
before with the (computational) burden that A can differ at each xR.

For model (25) the bootstrap procedure actually does not change, and therefore the construc-
tion of confidence bands for the functions aj(xR) works as before.

6 Empirical Example

The data used in this paper come from the following public use sources: (1) the Family
Expenditure Surveys 1969, 1974, 1978, 1982, 1984, 1986, 1990, 1992 and 1996; (2) the Surveys
of Household Spending 1997, 1998 and 1999; and (3) Browning and Thomas (1999), with
updates and extensions to rental prices from Pendakur (2001, 2002). Price and expenditure
data are available for 12 years in 5 regions (Atlantic, Quebec, Ontario, Prairies and British
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Columbia) yielding 60 distinct price vectors. Prices are normalized so that the price vector
facing residents of Ontario in 1986 is (1, ..., 1).

Table 1 gives summary statistics for 6952 observations of rental-tenure unattached individ-
uals aged 25-64 with no dependents. Analysis is restricted to these households to minimize
demographic variation in preferences. The empirical analysis uses annual expenditure in nine
expenditure categories: food-in, food-out, rent, clothing, household operation, household fur-
nishing & equipment, private transportation operation, public transportation and personal
care. Personal care is the left-out equation, yielding eight expenditure share equations which
depend on 9 log-prices and log-expenditure. These expenditure categories account for about
three quarters of the current consumption of the households in the sample.

Table 1: The Data
Min Max Mean Std Dev

expenditure shares food-in 0.02 0.62 0.17 0.09
food-out 0.00 0.64 0.08 0.08
rent .01 0.95 0.40 0.13
clothing 0.00 0.53 0.09 0.06
operation 0.01 0.63 0.08 0.05
furnish/equip 0.00 0.65 0.04 0.06
private trans 0.00 0.59 0.08 0.09
public trans 0.00 0.35 0.04 0.04

log-expenditure 6.68 10.95 9.16 0.60
log-prices food-in -1.41 0.34 0.13 0.45

food-out -1.46 0.53 0.26 0.51
rent -1.32 0.37 -0.03 0.42
clothing -0.87 0.43 0.23 0.33
operation -1.40 0.32 0.12 0.46
furnish/equip -0.94 0.20 0.13 0.32
private trans -1.53 0.53 0.01 0.52
public trans -1.14 0.69 0.14 0.63

All models estimated in the empirical work maintain the restriction of homogeneity, and
models used in consumer surplus exercises maintain the additional restriction of Slutsky
symmetry. Thus, for the 9-good demand system, the A (A(xR)) matrix (function) is a 9× 9
matrix of compensated semi-elasticities with row-sums of zero, and β(xR) is a 9 element
vector-function of log real-expenditure which everywhere sums to one. We implement our
models using a predictor of log real-expenditure that uses pre-estimates of A and β. For
the fixed-coefficient model, we compute A0, the pre-estimate of A, as the average of the
fully nonparametric estimate of symmetry-unrestricted compensated semi-elasticity matrix at
each observation, see above. For the varying-coefficient model, we compute A0(xR), the pre-
estimate of A(xR), as the nonparametric estimate of the symmetry-unrestricted compensated
semi-elasticity matrix at the base price vector p = 0M . For both models, we compute β0, the
pre-estimate of β, as equal to the Engel curve for observations facing base prices p = 0M .
For the fixed-coefficients model, we compute a pre-estimate of log real-expenditure for each
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observation, and use Yatchew’s difference estimator for A with 100’th order moving-average
difference coefficients. Holding the order of the difference constant, results are essentially
unchanged if we use optimal or optimal symmetric difference coefficients instead. Estimates
are essentially identical if 50’th or 20’th order moving average differencing coefficients are
used instead. For the nonparametric part, we use the cross-validated bandwidth.

For the varying-coefficients model, we use a bandwidth of 0.24 log real-expenditure units,
which was found by cross-validation, for all equations. Results, including all the results of
all tests described, do not qualitatively change if a bandwidth 50% larger or 25% smaller is
used instead.

We use the subsampling approach described above to assess the influence of the pre-estimation
step, and consider the homogeneity-restricted but symmetry-unrestricted fixed-coefficients
model. We drew 200 subsamples containing 2000 observations each from the 6952 observa-
tions in the data described above. For each subsample, we created pre-estimates of A and β

as described above, and used these pre-estimates to estimate the iterated model on the entire
sample of 6952 observations. We iterated the model 6 iterations past the pre-estimation for
each of the 200 consistent pre-estimates. If the variance of final iterated estimates across the
subsamples is zero, then the pre-estimation step does not have an impact on the final esti-
mate, see discussion above. Since for fixed A, there is a unique β and log real-expenditure,
we will discuss only the behaviour of the estimate of A0 across subsamples. The sum of the
64 variances of the elements of the pre-estimates of A across the subsamples is 0.0129. The
sum of the 64 variances of the elements of iterated estimates of A across the subsamples is
0.0000009, which is smaller by a factor of about 15000. The variance of the iterated esti-
mates across subsamples is numerically close to zero, and is greatly dwarfed by the sampling
variance of the estimates, which sum to 0.0219 as we shall see below. Thus, we can conclude
that the final iterated estimator is efficient and we only present these estimates in the results
below.

The fixed- and varying-coefficients models differ only in their treatment of compensated price
effects. In the varying-coefficients model, these effects may differ over log real-expenditure.
The Slutsky symmetry restriction likewise only concerns compensated price effects. Thus, we
begin with a discussion of estimated compensated price effects and of symmetry tests, and
then proceed to discuss estimated Engel curve functions.

6.1 Compensated Price Effects and Symmetry

Table 2 gives the symmetry-unrestricted estimate of A resulting from iterating our model
between estimates of A and β and their implied values for the constructed right-hand side
variable xR. In practise, the estimates ‘settle down’ after about 3 iterations. All tables present
estimate values after 6 iterations. Simulated standard errors are given in italics below each
estimate.
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Table 2: Estimated Compensated Price Effects, Â
food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.035 -0.009 -0.088 -0.040 -0.037 0.032 0.058 -0.064
0.026 0.020 0.007 0.027 0.027 0.017 0.008 0.009

food-out 0.054 -0.022 0.018 -0.008 0.061 -0.053 0.008 -0.026
0.026 0.020 0.007 0.028 0.025 0.016 0.008 0.009

rent -0.073 0.107 0.100 0.075 -0.104 0.036 -0.054 0.080
0.038 0.029 0.010 0.039 0.039 0.023 0.011 0.013

clothing 0.001 0.013 -0.002 0.044 -0.023 0.010 -0.028 0.022
0.015 0.012 0.004 0.016 0.016 0.008 0.004 0.005

hh oper 0.055 -0.047 0.002 -0.023 -0.048 0.007 -0.002 -0.018
0.019 0.014 0.005 0.019 0.020 0.012 0.006 0.007

furn/equ 0.023 -0.085 -0.016 -0.054 0.086 -0.005 0.029 0.000
0.020 0.014 0.005 0.021 0.020 0.012 0.006 0.007

priv tr -0.018 0.075 -0.032 0.027 0.003 -0.003 -0.013 0.002
0.029 0.023 0.008 0.030 0.030 0.018 0.008 0.009

pub tr -0.026 -0.023 0.029 0.007 0.017 0.011 0.002 0.003
0.015 0.011 0.004 0.015 0.016 0.009 0.004 0.005

Table 3 presents symmetry-restricted estimates of the matrix of compensated price effects.
As one might expect, the simulated standard errors for off-diagonal terms are much smaller
than those reported in Table 2 because if they are true, the symmetry restrictions are quite
informative.

Table 3: Estimated Symmetry-Restricted Compensated Price Effects
food-in food-out rent clothing hh oper furn/equ priv tr pub tr

food-in -0.073 0.053 -0.088 0.002 0.057 0.019 0.039 -0.043
0.020 0.013 0.007 0.011 0.010 0.009 0.007 0.006

food-out -0.050 0.059 0.020 -0.011 -0.052 0.012 -0.031
0.014 0.006 0.008 0.011 0.008 0.005 0.005

rent 0.071 -0.001 -0.028 -0.027 -0.027 0.054
0.010 0.004 0.005 0.005 0.006 0.003

clothing 0.038 -0.020 0.001 -0.031 0.026
0.012 0.009 0.006 0.004 0.004

hh oper -0.051 0.035 -0.012 -0.012
0.014 0.009 0.005 0.005

furn/equ 0.039 0.008 0.000
0.007 0.005 0.013

priv tr 0.012 0.003
0.008 0.003

pub tr -0.001
0.003

The estimate of A reported in Table 2 does not ‘appear’ to satisfy symmetry, and indeed, a
Wald test of symmetry based on the joint hypothesis that all off-diagonal terms equal their
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symmetric partner rejects the hypothesis. The symmetry test statistic is τSY M = α
′
Σ−1

α α,
where α is the sample estimate of the difference between off-diagonal terms equal under
symmetry, and Σ−1

α is their covariance estimated via the bootstrap. The sample value of
the test statistic is 424, which is larger than 48, the 1% critical value of the χ2

28, so we may
reject the hypothesis of symmetry in the fixed coefficient model.4 The failure of symmetry
could be due to the presence of unobserved behavioural heterogeneity as noted by Lewbel
(2001) and Matskin (2005). Alternatively, it could be due to the restriction that the matrix
of compensated price effects A is independent of utility. Below, we argue that this latter
possibility may be true.

We estimated the varying coefficient version of the model via a locally linear varying coeffi-
cients semiparametric model. We use a gaussian kernel for the local linear estimator, with a
bandwidth of 0.24 selected by cross-validation. We use a single bandwidth for all 8 equations.
For unrestricted models, one could use a different bandwidth in each equation. However, for
the symmetry-restricted model, the model is a locally weighted SUR regression wherein all
equations are stacked together. In this case, it is more natural to use a single bandwidth for
all equations, so we employ this structure for all varying-coefficient models. In this model, A
depends on u, or equivalently, on xR. This model can encompass the partially linear model
if A is independent of xR, so it is natural to test whether or not this additional flexibility is
necessary.

Using symmetry-unrestricted varying coefficient estimates, we construct a matrix-valued func-
tion of deviations ÂD(xR

t ) = Â(xR
t ) − 1

T

∑T
t=1 Â(xR

t ) over a grid of T equispaced points in
the range of xR. Since Â is asymptotically normal, so is its deviation from its mean over T

points in log real-expenditure. Under the null hypothesis of a fixed-coefficient model, these
deviations should be zero. Thus, we construct the M ×M ×T−vector λ as the vectorisation
of ÂD(xR

t ) over all T points, and simulate its variance, denoted Σλ, under the null that the
partially linear model is true. Our test statistic is then τPLM = λΣ−1

λ λ which is distributed
asymptotically as a χ2

M2(T−1). One could compare the the sample value of τPLM to its
asymptotic distribution. However, in practise because the A matrix converges more slowly
in the varying-coefficients model than in the fixed-coefficients model, we account for possible
sample bias by bootstrapping the entire statistic. Using T = 9, the value of our test statistic
is 876, and the 1% critical value its simulated distribution under the null is 124. Thus, for
these data we may reject the hypothesis that the matrix of compensated price effects A is
independent of utility, and may comfortably use the varying coefficients model.

As noted above, in the fixed coefficients model, we reject symmetry. We construct a test
statistic for symmetry in the varying-coefficients model analagous to that used in the fixed-
coefficients model. In the varying-coefficients model, the vector α depends on xR, so we denote
this vector-function as α(xR), and evaluate it at a grid of T equispaced points in the range of
xR. Thus, we may construct pointwise tests of symmetry as τSY M

t = α
′
(xR

t )Σ−1
α(xR

t )
α(xR

t ) for

t = 1, ..., T . Using sample values of α
′
(xR

t ) and a bootstrap estimate of Σ−1
α(xR

t )
, each of these

tests is asymptotically χ2
28 with a 1% critical value of 48. However, to account for possible

4One could alternatively bootstrap the entire test statistic to account for possible small-sample bias. How-

ever, given the fast convergence in the partially linear model, it is not surprising that this alternative approach

also yields a very strong rejection of symmetry.
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small-sample bias, we bootstrap the entire statistic. Figure 1 shows 90% confidence bands
for the test statistic under the null of symmetry on the grid of 9 points. For T = 9, we
find no pointwise rejection of symmetry. That symmetry is rejected in the partially-linear
model but not rejected in the varying coefficients model could be due to one of two factors.
It may be that symmetry is true, but the utility-independence restriction on A is false, which
leads to a false rejection of symmetry in the partially linear model. Alternatively, it may be
that symmetry is false, but the relative imprecision of the estimated A(xR) in the varying-
coefficient model yields a test with low power, so that symmetry is not rejected even though
it is false. Below, we consider the latter possibility.

Table 4 gives estimates of compensated price effects in the symmetry-unrestricted varying-
coefficients model, evaluated at the median log real-expenditure level of 9.30. The data are
densest near the median, so this is where the varying coefficients model is most precise.
Simulated standard errors are given in italics below each estimate. Clearly, the precision
of the estimates is lower than in the fixed coefficients model. Most elements of A(xR) are
estimated with about half the precision of the corresponding estimates in the partially linear
model, and some with much less precision. This suggests that the non-rejection of symmetry
in the varying-coefficients model may be due to the imprecision of the estimated coefficients,
and thus we should treat this non-rejection of symmetry with caution.

Table 4: Compensated Price Effects, VCM, median xR

food-in food-out rent clothing hh oper furn/equ priv tr pub tr
food-in -0.018 -0.082 -0.014 -0.071 0.049 0.032 -0.046 -0.018

0.030 0.011 0.042 0.041 0.025 0.012 0.015 0.030
food-out -0.013 0.007 0.003 0.059 -0.040 0.014 -0.031 -0.013

0.027 0.009 0.034 0.029 0.019 0.011 0.011 0.027
rent 0.099 0.138 0.026 -0.058 -0.013 -0.057 0.090 0.099

0.040 0.013 0.049 0.049 0.029 0.016 0.016 0.040
clothing 0.011 -0.007 0.032 -0.013 0.002 -0.026 0.022 0.011

0.015 0.005 0.016 0.018 0.010 0.005 0.006 0.015
hh oper -0.042 -0.003 -0.027 -0.042 0.002 -0.002 -0.023 -0.042

0.021 0.007 0.027 0.025 0.015 0.006 0.009 0.021
furn/equ -0.089 -0.022 -0.054 0.103 0.001 0.035 0.002 -0.089

0.020 0.007 0.028 0.027 0.017 0.008 0.009 0.020
priv tr 0.076 -0.044 0.053 -0.057 0.015 -0.006 -0.014 0.076

0.036 0.013 0.041 0.045 0.026 0.012 0.014 0.036
pub tr -0.016 0.030 0.013 0.032 0.015 0.003 -0.001 -0.016

0.015 0.006 0.020 0.021 0.013 0.006 0.006 0.015

Since our model of demand is generated from a model of cost and uses real expenditure
– a dual of utility – as a dependent variable, symmetry must hold for the model to be
sensible. In addition, consumer surplus calculations are only unique for estimated models
satisfying symmetry. Thus, we take the non-rejection of symmetry in the varying-coefficients
model as licence to use symmetry-restricted varying-coefficients estimates in a consumer-
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surplus exercise below. Table 5 gives estimates of compensated price effects for the symmetry-
restricted varying-coefficients model evaluated at the median of log real-expenditure.

Table 5: Symmetry-Restricted Compensated Price Effects, VCM, median xR

food-in food-out rent clothing hh oper furn/equ priv tr pub tr
food-in -0.081 0.059 -0.088 0.018 0.040 0.024 0.023 -0.033

0.018 0.016 0.009 0.014 0.013 0.011 0.008 0.007
food-out -0.045 0.049 0.016 -0.002 -0.058 0.016 -0.035

0.019 0.008 0.010 0.011 0.010 0.008 0.007
rent 0.106 -0.004 -0.028 -0.033 -0.032 0.055

0.013 0.004 0.005 0.005 0.009 0.005
clothing 0.023 -0.010 -0.006 -0.027 0.026

0.014 0.012 0.008 0.005 0.004
hh oper -0.045 0.036 -0.015 -0.015

0.017 0.010 0.006 0.006
furn/equ 0.043 0.012 0.002

0.008 0.005 0.005
priv tr 0.021 0.003

0.013 0.005
pub tr -0.006

0.004

The differences between the models are most easily seen graphically. Figures 2-4 give es-
timated values of selected elements of Â(xR) at 39 equispaced points in the range of log
real-expenditure. The displayed elements correspond to own-price effects for food-in and
rent, and the cross-price effects of food-out on food-in and vice-versa. In each figure, black
and grey lines indicate varying- and fixed-coefficients estimates, respectively. Quadratic al-
most ideal (QAI) estimates (see, eg, Banks, Blundell and Lewbel 1997) are presented with
dark dotted lines. Simulated 90% uniform confidence bands for the symmetry-restricted
varying-coefficients estimates are indicated with crosses at 9 equispaced points in the range
of log real-expenditure.

The median and average of log real-expenditure are 9.30 and 9.27. In this part of the distribu-
tion, it is clear the the fixed-coefficients model does fairly well in capturing the compensated
price effects. In addition, the fixed-coefficients model gives estimates of compensated price
effects very similar to those of the quadratic almost ideal model. This is because although
the QAI model has compensated semi-elasticities which depend on expenditure, there is (typ-
ically) only one matrix of parameters governing price effects, so that QAI price effects are
not flexible over expenditure.

Over much of the middle of the distribution, the compensated price effects shown in Figures
2 and 3 essentially overlap under the fixed- and varying-coefficients models. However, even in
the middle of the distribution, one can see in Figure 4 that the estimated rent compensated
own-price effect is poorly approximated by the fixed coefficients and QAI models. The fixed
coefficients model estimates are too low, and lie outside the uniform confidence band of the
varying-coefficients model estimates.
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The fixed-coefficient model performs worst far from the middle of the distribution of log real-
expenditure. For example, the food-in compensated own-price effect is large and positive
at the bottom of the distribution, but small and negative throughout the middle of the
distribution. This means that although middle-income individuals are able to substitute
away from food when its price rises, poorer individuals are not able to do so. Thus, use of
the fixed coefficients model would bias welfare analysis in potentially important ways (as we
will show below).

6.2 Engel Curve Functions

Figures 5-12 show estimated functions β for the models we estimated. Since w(p, xR) =
β

(
xR

)
at the base price vector, the Engel curve functions β

(
xR

)
give the estimated expen-

diture share at the base price vector. Expenditure shares are evaluated at 39 equally spaced
points over the middle 99% of the implied log real-expenditure distribution. In each figure,
black and grey lines indicate varying- and fixed-coefficients estimates, respectively. Thick and
thin lines indicate symmetry-restricted and unrestricted estimates, respectively. Simulated
90% uniform confidence bands for the symmetry-restricted varying-coefficients estimates at
9 equally spaced points are shown with crosses. QAI estimates are shown with dark dotted
lines.

Figures 5-12 show estimated shares for food at home, food out, rent, household operation,
household furnishing/equipment, clothing, private transportation operation and public trans-
portation, respectively. The left-out expenditure share is personal care.

The expenditure-share equations for food-in and food-out are roughly linear, as is found in
non-parametric investigations of the shape of Engel curves (eg, Banks, Blundell and Lewbel
1997). Not surprisingly, all models have roughly the same estimated Engel curve functions
for these almost linear expenditure-share equations. Rent shares are roughly ’U-shaped’ as
found in previous work, and there is some evidence of rank greater than 2 at the extremes
of the expenditure distribution. For rent shares, the QAI model does not do as good a job.
For example, the estimated rent share at the bottom decile cutoff of xR = 8.6 is almost
2 percentage points higher given the QAI model than given the varying-coefficients model.
In this part of the distribution, the fixed-coefficients model also performs relatively poorly,
driven in large measure by the falseness of the fixed-coefficients assumption at the bottom of
the distribution (shown in Figure 3).

Some expenditure share equations appear to be ‘S-shaped’ as noted in previous work on Engel
curves (Blundell, Chen and Christensen (2003)). The curvature of the private transporta-
tion operation expenditure-share equation varies greatly over expenditure and suggests rank
greater than 2. In particular, expenditure shares are nearly flat for the bottom quintile of the
population, steeply rising through middle of the distribution, and falling for the top quintile.
The complexity of this Engel curve is difficult to capture in a quadratic specification, and for
this reason, the QAI estimate of the private transportation share is fairly distant from both
the varying- and fixed-coefficient estimates throughout the distribution of expenditure.

The approach presented here, which allows for demand systems of any rank up to M − 1,
does reveal features of the data that parametric investigations neglect. Further, given the
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structural model for cost and demand, it also reveals features that ’engel-curve by engel-
curve’ approaches would also miss due to their small sample sizes. Differences appear both
in the shape of Engel curves and in the compensated price responses across the distribution
of expenditure. Given the simulated uniform confidence bands shown in the Figures, it is
clear that the restricted models are rejected in statistical terms. However, it remains to be
shown that the restrictions embodied in these models are costly in terms of their economic
significance.

6.3 A Cost-of-Living Experiment

We assess the economic significance of our models with a cost-of-living experiment. In
Canada, rent is not subject to sales taxes, which typically amount to 15% for goods such
as food-out and clothing. Consider the cost-of-living index associated with subjecting rent
to a 15% sales tax for people facing the base price vector. The log cost-of-living index
for this change is given by N(p, x) − x, where N is the nominal expenditure function, and
p = [0, 0, ln(1.15), 0, ..., 0]′, the new price vector. Using estimated values, this is

p′β̂ (x) +
1
2
p′Âp=β̂rent(x) ln(1.15) +

ârent,rent

2
ln(1.15)2

for the fixed-coefficients model and

p′β̂ (x) +
1
2
p′Â(x)p =β̂rent(x) ln(1.15) +

ârent,rent(x)
2

ln(1.15)2

for the varying coefficients model.

Figure 13 shows how the cost-of-living index varies over expenditure for this hypothetical
price change given estimates from symmetry-restricted fixed- and varying-coefficients models,
as well as estimates from the (symmetry-restricted) QAI model. Here, neither the fixed-
coefficients model nor the QAI perform very well in approximating the estimated cost-of-living
impact indicated by the varying-coefficients estimates. In the lower part of the distribution,
both the former models overstate the cost-of-living impact. For example, at the bottom decile
of the real expenditure distribution (xR = 8.6), the QAI and fixed-coefficients estimates of the
cost-of-living impact are 7.4% and 7.0%, respectively, but the varying-coefficients estimate
is 6.4%. In the upper part of the distribution, the fixed coefficients model performs better,
but the QAI again overstates the cost-of-living impact of the price increase. The reason for
these patterns can be seen in Figures 3 and 6. Both the fixed-coefficient and QAI models
have inflexible compensated price effects, and Figure 3 suggests that this inflexibility is most
costly at the bottom of the distribution of real expenditure, which is where both models
perform poorly. In addition, the QAI faces the restriction that Engel curves are quadratic,
which results in a poor fit in comparison to the nonparametric Engel curve functions at both
ends of the distribution.

We conclude from this investigation that our approach yields insights about the shape of
expenditure-share equations that may be hard to see in ‘traditional’ Engel-curve by Engel-
curve nonparametric regression approach. In particular, our approach allows the investigator
to estimate a complete demand system wherein expenditure-share equations may be arbi-
trarily complex in their relationship with real expenditure. Further, in the varying-coefficient
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version of our model, the investigator may include price effects that vary with real expendi-
ture. Our empirical work suggests that the varying-coefficient extension is both statistically
significant and economically important.

7 Conclusions

We propose a cost function whose implied consumer demand system has parametric price
effects and nonparametric real expenditure effects. Because the demand system is nonpara-
metric in a single dimension, real expenditure, we avoid the curse of dimensionality typically
associated with the fully nonparametric estimation of consumer demand. Our demand system
may have any rank, and may be restricted to satisfy homogeneity, symmetry and concavity,
which together comprise the integrability restrictions. We show

√
n-convergence of the para-

metric components and convergence rates for the nonparametric components. An application
with Canadian price and expenditure data shows our method’s potential.

8 Appendix: Proofs

Proof of Theorem 3:
As the local linear estimator is well studied [see e.g. Lejeune (1985) or Fan and Gijbels
(1996)], we show here only how the bias and variance terms change due to the use of a
nonparametrically generated regressor. As the matrix A is estimated with the parametric
rate, it is clear that the randomness caused by its estimation can be neglected when looking
at the asymptotics of our nonparametric estimator. Further, it will be seen in the proof that
it is sufficient to do the explicit calculations for only one of the M equations.

To ease the notation, we set Yi := W j
i − ajP i and b := βj , ε(Xi, P i) := εj

i with variance
function σ2

ε (Xi, P i) for an arbitrary j = 1, . . . , M . Further, we write BX and σ2
X as functions

of xR and recall assumption [X1]. Then, for ξi between xR and XR
i we have

Yi = b(xR) + b′(xR){XR
i − xR}+

b′′(ξi)
2

{XR
i − xR}2 + ε(xi, pi) . (27)

The estimator for b (and b′) in xR is defined by
(

b̂(xR)
b̂′(xR)

)
=

(
N11 N12

N12 N22

)−1 (
Z1

Z2

)
(28)

where

(
N11 N12

N12 N22

)
:=







1 X̂R
1 − xR

...
...

1 X̂R
n − xR




T

diag
(
Kh(X̂R

i − xR)
)n

i=1




1 X̂R
1 − xR

...
...

1 X̂R
n − xR







−1

(
Z1

Z2

)
:=




1 X̂R
1 − xR

...
...

1 X̂R
n − xR




T

diag
(
Kh(X̂R

i − xR)
)n

i=1
Y .
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Combining (27) with (28) we see that for calculating bias it is sufficient to consider
(

N11 N12

N12 N22

)−1 (
M1

M2

)
(29)

with vector (M1,M2) :=



1 X̂R
1 − xR

...
...

1 X̂R
n − xR




T

diag
(
Kh(X̂R

i − xR)
)n

i=1




b′(xR){XR
1 − xR}+ b′′(ξ1)

{XR
1 −xR}2

2
...

b′(xR){XR
n − xR}+ b′′(ξn){X

R
n −xR}2

2


 .

We first calculate the inverse matrix in equation (28):

N11 =
n∑

i=1

Kh(X̂R
i − xR) = n

∫ {
BX(v)

h2
K ′(

v − xR

h
) + o(h)

}
f(v)dv + nf(xR)

= nf(xR) + o(n)

due to the rate assumptions on BX , σ2
X and because K ′ integrates to zero. Further we have

N12 =
n∑

i=1

(X̂R
i − xR) Kh(X̂R

i − xR) = n

∫ {
hv −BX(xR + hv)

}
K(v)f(xR + hv)dv

+n

∫ {
hv −BX(xR + hv)

} BX(xRvh)
h

K ′(v)f(xR + hv)dv + o
(
nBX(xR)

)

= nBX(xR)f(xR){µ1(K ′)− 1}+ o
(
nBX(xR)

)

N22 =
n∑

i=1

(X̂R
i − xR)2 Kh(X̂R

i − xR)

= n

∫ {
hv −BX(xR)

}2
{

K(v) +
BX(xR)

h
K ′(v) + o(

BX(xR)
h

)
}

f(xR + hv)dv

= nµ2(K)h2f(xR) + no(h2)

For the vector (M1,M2) we have basically to repeat calculations as we have done for N11

(when calculating M1) and N12 (when considering M2) and get.

M1 = nf(xR)
{
−b′(xR)BX(xR) + h2µ2(K)

b′′(xR)
2

}
+ o

(
nh2

)

M2 = nb′(xR)B2
X(xR)f(xR){1− µ1(K ′)} .

Putting this into (29) yields the bias stated in the theorem.

For the variance one has to consider the expectation of
(

N11 N12

N12 N22

)−1 (
M ′

1

M ′
2

)(
M ′

1

M ′
2

)T (
N11 N12

N12 N22

)−1

(30)

with vector (M ′
1,M

′
2) :=




1 X̂R
1 − xR

...
...

1 X̂R
n − xR




T

diag
(
Kh(X̂R

i − xR)
)n

i=1




b′(xR){XR
1 − xR}+ b′′(ξ1)

{XR
1 −xR}2

2 + ε1
...

b′(xR){XR
n − xR}+ b′′(ξn){X

R
n −xR}2

2 + εn


 .
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Looking at the last vector in the definition of (M ′
1,M

′
2) it is clear that the matrix (M ′

1, M
′
2)

T

(M ′
1,M

′
2) can be decomposed additively in four symmetric matrices, one containing only the

b′ (denoted by C1 ), one only containing the b′′ (denoted by C2), one with with both (denoted
by C3), and one with only the error terms εi (denoted by C4). Under expectation the other
terms either vanish or are obviously of higher order.

We start with C1. For some ξi between XR
i and xR we get:

E[C1
11] = E




n∑

j=1

n∑

i=1

b′2(xR){BX(XR
i ) + ui}{BX(XR

j ) + uj}εiεj

{
Kh(XR

i − xR) +
BX(XR

i ) + ui

h
K ′

h(ξi)
} {

Kh(XR
j − xR) +

BX(XR
j ) + uj

h
K ′

h(ξi)

}]

= n2f2(xR)B2
X(xR)b′2(XR

0 ) + o(n2B2
X(xR)) ,

where νk =
∫

vkK2(v)dv. Further,

E[C1
12] = E




n∑

j=1

n∑

i=1

b′2(xR){BX(XR
i ) + ui}{BX(XR

j ) + uj}εiεj{XR
i − xR + BX(XR

i ) + ui}

{
Kh(XR

i − xR) +
BX(XR

i ) + ui

h
K ′

h(ξi)
} {

Kh(XR
j − xR) +

BX(XR
j ) + uj

h
K ′

h(ξi)

}]

= n2f2(xR)B3
X(xR)b′2(XR

0 ) + o(n2B3
X(xR))

E[C1
22] = n2f2(xR)B4

X(xR)b′2(XR
0 ) + o(n2B4

X(xR)) .

Similarly, for some ζi between XR
i and xR we have:

E[C2
11] = E




n∑

j=1

n∑

i=1

b′′(ζi)
2

(XR
i − xR)2

b′′(ζj)
2

(XR
j − xR)2

{
Kh(XR

i − xR) +
BX(XR

i ) + ui

h
K ′

h(ξi)
} {

Kh(XR
j − xR) +

BX(XR
j ) + uj

h
K ′

h(ξi)

}]

=
n2h4

4
f2(xR)b′′2(XR

0 )µ2
2(K) + o(n2h4)

E[C2
12] =

n2h5

4
f2(xR)b′′2(xR)µ2(K)µ3(K) + o(n2h5)

E[C2
22] =

n2h6

4
f2(xR)b′′2(xR)µ2

3(K) + o(n2h6) .
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Next, considering the mixture of b′ and b′′ we have

E[C3
11] = E




n∑

j=1

n∑

i=1

b′(xR){BX(XR
i ) + ui}b′′(ζj)

2
(XR

j − xR)2

{
Kh(XR

i − xR) +
BX(XR

i ) + ui

h
K ′

h(ξi)
} {

Kh(XR
j − xR) +

BX(XR
j ) + uj

h
K ′

h(ξi)

}]

=
n2h2

2
f2(xR)b′′(XR

0 )b′(XR
0 )µ2(K)(−BX(xR)) + o

(
n2h2BX(xR)

)

E[C3
12] =

n2h3

2
f2(xR)b′′(XR

0 )b′(XR
0 )µ3(K)(−BX(xR)) + o

(
n2h3BX(xR)

)

E[C3
22] =

n2h4

2
f2(xR)b′′(XR

0 )b′(XR
0 )µ4(K)(−BX(xR)) + o

(
n2h4BX(xR)

)
.

Finally, for C4 we have

E[C4
11] =

n

h
f(xR)σ2

ε (x
R)ν0 + o(

n

h
)

E[C4
12] =

n

h
f(xR)σ2

ε (x
R)ν1h + o(n)

E[C4
22] =

n

h
f(xR)σ2

ε (x
R)ν2h

2 + o(nh) .

For more details of the calculations compare Sperlich (2005).

Plugging now this results in (30) gives the variance we have stated in the Theorem. ¤

Proof of Theorem 4:
Also the local linear varying coefficient estimator is already well studied, see e.g. Cleveland,
Grosse and Shyu (1991), Fan and Zhang (1999) or Cai, Fan and Li (2000). The calculations
to incorporate the additional bias and variance coming in by the use of a generated regressor,
are basically the same as for Theorem 3. Note that now, skipping the index j = 1, . . . , M of
W and of the functions ak , k = 0, . . . ,M for the ease of notation,

Wi =
M∑

k=0

P k
i

{
ak(xR) + a′k(x

R){XR
i − xR}+

a′′k(ξi)
2

{XR
i − xR}2

}
+ ε(xi,pi) .

The estimator of ak in xR is defined then by the 2k + 1’th element of
(
RT KR

)−1
RT KW ,

where

R =




P 0
1 P 0

1 (X̂R
1 − xR) . . . PM

1 PM
1 (X̂R

1 − xR)
...

...
. . .

...
...

P 0
n P 0

n(X̂R
n − xR) . . . PM

n PM
n (X̂R

n − xR)




K = diag
(
Kh(X̂R

i − xR)
)n

i=1
.

It is clear that this leads to the same equations as in proof of Theorem 3 but now always
with P k

i P l
j , k, l = 0, . . . , M , i, j = 1, . . . , n inside the (double) sums. Taking the expectation

with respect to XR = xR this leads to the elements of matrix Ω−1 which cancel in the bias
but not for the variance, compare Theorem 3 of Fan and Zhang (1999). For more details of
the matrix calculations we also refer to their paper. ¤
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Figure 1: Pointwise Tests of Symmetry  in the 
Varying Coefficients Model, simulated 90% confidence intervals
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Figure 2: Compensated Semi-elasticities:  
Food-In own-price effect
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Figure 3: Compensated Semi-elasticities:  
Food-In, Food-out cross-price effect
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Figure 4: Compensated Semi-elasticities:  Rent own-price effect
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Figure 5: Estimated Food-in Shares
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Figure 6: Estimated Food-Out Shares
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Figure 7: Estimated Rent Shares
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Figure 8: Estimated Household Operation Shares
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Figure 9: Estimated Household Furnish/Equip Shares
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Figure 10: Estimated Clothing Shares
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Figure 11: Estimated Private Transportation Shares
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Figure 12: Estimated Public Transportation Shares
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Figure 13: Cost-of-Living Change: 15% Rent increase
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