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The probability density of finding 
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N.B. The wave function may be complex, but a probability must be real and nonnegative.

The statistical interpretation implies indeterminacy:  Until you measure the position you 
only know the probability of finding it at a particular position.

The Copenhagen interpretation says that the particle is not anywhere particular until we 
measure it.  Measurement collapses the wave function.

Measurements on a set of identical particles will generate different values (subject to 
the probability distribution yy*.  
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Schrödinger’s Cat
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Schrödinger’s Cat

A closed box contains a small amount of radioactive material,
a Geiger counter hooked to a triggering device that can break
a vial of poison gas

…and a cat.

What is the state of the cat after a short time (during which one atom might decay)?

As long as the box is shut the cat’s state is indeterminate:

Schrödinger

( )alive dead
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ψ = ψ +ψ

Opening the box collapses the wave function to one state or the other.

Alternative (modern) explanation:

Triggering the Geiger counter is the measurement, not opening the box.



The Time Independence of Normalization

By the statistical interpretation, y must be normalized

Schrödinger Equation ( )
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But is this true at all times? 
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Substitute with S eqn and its complex conjugate 

provided y goes 
to zero at infinity



Derivation of Momentum Operator

Since the position of an individual particle is indeterminate, so is its momentum. 

We can only calculate the expectation values of position and momentum.
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The Postulates of Quantum Mechanics
1. The state of a system is fully described by a function which is determined 

by a set of quantum numbers                     .               is proportional to the 
probability of finding the particle(s) between     and          at specific time   .

2. For every observable property there exists a corresponding linear Hermitian operator 
whose mathematical properties can be used to infer the value of that observable.

3. (i) When         is an eigenfunction of the operator     
corresponding to the observable     , experimental 
measurement of      will always yield the same result, 
namely the eigenvalue      .

(ii) If         is not an eigenfunction of           
experiments will yield a range of values with average

4. The evolution of a state function in time is given by
where      is the Hamiltonian.

5. must be antisymmetric with respect to the exchange of fermions.
Pauli Exclusion Rule
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Expansion of Wave Functions

If the state function         is not an eigenfunction of the desired operator     , it can always 
be expanded as a linear combination of eigenfunctions       :
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A single measurement will not give         .  It will give one of the eigenvalues       .

A large number of measurements will give all possible eigenvalues, weighted 
according to their individual probabilities   

Ω̂ nω

2*
mn mn mnc c c=



Hermitian Operators − 1

Or more succinctly  
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Eigenvalues of Hermitian operators are real.
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Hermitian Operators − 2

Eigenfunctions corresponding to different eigenvalues of Hermitian operators are 
orthogonal.

The product of two Hermitian operators is Hermitian itself only if the two 
operators commute.
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Commutation of Operators
If observables A and B can be precisely determined simultaneously, 
then the operators     and      must commute.ˆ A B̂

If the state function is simultaneously an eigenfunction of     and    , thenˆ A B̂ [ ]ˆ ˆA,B 0=

If     and     commute, A and B can be determined simultaneously.ˆ A ˆ B
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For degenerate wave functions it is necessary to prove that 
any linear combination is also an eigenfunction.
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( ) ( )Â m n m n m nc m c n ac m ac n a c m c n+ = + = +

and that the coefficients can always be chosen to produce mutually orthogonal 
linear combinations



The Uncertainty Principle
Take  a pair of non-commuting operators  and  whose experimental observables are Â B̂
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