The Variation Principle

The variational method

The energy calculated using an approximate wave function cannot be less than the true energy of the system.

For the exact wave function ψ

$$E = \frac{\langle \psi | \hat{\mathbf{H}} | \psi \rangle}{\langle \psi | \psi \rangle}$$

but for a trial wave function χ

$$\frac{\langle \chi | \hat{\mathbf{H}} | \chi \rangle}{\langle \chi | \chi \rangle} = \mathcal{F} \geqslant E$$

If χ is a function of one or more adjustable parameters these can be optimized to give a minimum value for \mathcal{E} .

If χ has the same form as ψ then \mathcal{E} can be optimized to give the true *E*.

Slater-type orbitals (STO):
$$\phi_{nlm} = Nr^{n^*-1} e^{-(Z-\sigma)r/(n^*a_0)} Y_{lm}$$
 $\phi_{nlm} = Nr^{n-1} e^{-Z^*r/a_0} Y_{lm}$
Gaussian-type orbitals (GTO): $\phi_{ijk} = Nx^i y^j z^k e^{-\alpha r^2}$

Linear combination of atomic orbitals (LCAO):

$$\chi = \sum_i c_i \phi_i$$

The Variation Principle – Justification

Assume that a trial function χ can be written as a linear combination of the true eigenfunctions ψ_i .

$$\chi = \sum_{j} c_{j} \Psi_{j}$$

where $\hat{H}\psi_i = E\psi_i$

 $\langle \chi | \hat{\mathbf{H}} | \chi \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \langle \Psi_{i} | \hat{\mathbf{H}} | \Psi_{j} \rangle$ Then $=\sum_{i}\sum_{j}c_{i}^{*}c_{j}E_{j}\left\langle i\right\vert j\right\rangle$ $=\sum_{j}c_{j}^{*}c_{j}E_{j}$ since $\langle i | j \rangle = \delta_{ij}$ $c_i^* c_i = \left| c_i \right|^2 \ge 0$ But $E_i \geqslant E_0$ and

where E_0 is the lowest energy eigenvalue

$$\mathcal{E} - E_0 = \frac{\langle \chi | \hat{H} | \chi \rangle}{\langle \chi | \chi \rangle} - E_0 = \frac{\sum_j c_j^* c_j E_j}{\sum_j c_j^* c_j} - E_0 \frac{\sum_j c_j^* c_j}{\sum_j c_j^* c_j} = \frac{\sum_j c_j^* c_j (E_j - E_0)}{\sum_j c_j^* c_j} \ge 0$$

i.e. $\mathcal{E} \ge E_0$

The Variation Method – An Example

This example tests a known problem with a trial function that does not have the same form as the known solution.

Problem: The particle in a box with infinitely high walls. The known solution is a sine function.

Trial function: $\chi = x(a-x)/a^2$ an inverted parabola

$$\langle \chi | \hat{H} | \chi \rangle = -\frac{\hbar^2}{2m} \int_0^a \left(\frac{x}{a} - \frac{x^2}{a^2} \right) \frac{d^2}{dx^2} \left(\frac{x}{a} - \frac{x^2}{a^2} \right) dx$$

= $-\frac{\hbar^2}{2ma^4} \int_0^a (ax - x^2) (-2) dx = \frac{\hbar^2}{6ma}$

$$\langle \chi | \chi \rangle = \frac{1}{a^4} \int_0^a (ax - x^2)^2 dx$$
$$= a \left(\frac{1}{3} - \frac{1}{2} + \frac{1}{5} \right) = \frac{a}{30}$$

 $\mathcal{E} = \frac{\langle \chi | \hat{H} | \chi \rangle}{\langle \chi | \chi \rangle} = \frac{5\hbar^2}{ma^2} = \frac{10}{\pi^2} \left(\frac{\pi^2 \hbar^2}{2ma^2} \right) = 1.013E_0$

only 1.3% higher than the true value

Note: The only adjustment in this example was in the normalization (wave amplitude).

The Variation Method applied to the H Atom

This example tests a known problem with a trial function that does have the correct form.

In atomic units the Schrödinger equation $-\frac{1}{2}\nabla^2\psi - \frac{Z}{r}\psi = E\psi$ for a 1-electron H-like atom is $\chi = N e^{-\alpha r}$ no angular part, so $\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{2}{r} \frac{\partial}{\partial r}$ Trial function: $\nabla^2 e^{-\alpha r} = \alpha^2 e^{-\alpha r} - \frac{2\alpha}{2\alpha} e^{-\alpha r}$ $\left\langle \chi | \hat{\mathbf{H}} | \chi \right\rangle = N^2 \int_{\alpha}^{\infty} \left(-\frac{\alpha^2}{2} + \frac{\alpha}{r} - \frac{Z}{r} \right) e^{-2\alpha r} 4\pi r^2 dr = N^2 \pi \left[-\frac{1}{2\alpha} + \frac{1}{\alpha} - \frac{Z}{\alpha^2} \right] = \frac{N^2 \pi}{\alpha^2} \left[\frac{1}{2} \alpha - Z \right]$ $\langle \chi | \chi \rangle = N^2 \int_{0}^{\infty} 4\pi r^2 e^{-2\alpha r} dr = N^2 \frac{\pi}{\alpha^3}$ $\mathcal{E} = \frac{\langle \chi | \hat{H} | \chi \rangle}{\langle \chi | \chi \rangle} = \frac{1}{2} \alpha^2 - Z \alpha$ This function has a minimum value at $\alpha = Z$ $\mathcal{E} = -\frac{1}{2}Z^2$ which is the exact value since the trial function had the correct form

The Variation Method applied to the He Atom

This is a real problem with hitherto unknown solution.

The Schrödinger equation can be simplified with 1-electron H-like terms

$$-\frac{1}{2}\nabla_{1}^{2}\psi - \frac{Z}{r_{1}}\psi - \frac{1}{2}\nabla_{2}^{2}\psi - \frac{Z}{r_{2}}\psi + \frac{1}{r_{12}}\psi = E\psi$$
$$\hat{h}_{1}\psi + \hat{h}_{2}\psi + \frac{1}{r_{12}}\psi = E\psi$$

Trial function: $\chi = |1s_1 1 s_2\rangle$ where $|1s\rangle = N e^{-\alpha r}$ H-like

$$\mathcal{E} = \langle 1s_1 1s_2 | \hat{h}_1 | 1s_1 1s_2 \rangle + \langle 1s_1 1s_2 | \hat{h}_2 | 1s_1 1s_2 \rangle + \langle 1s_1 1s_2 | \frac{1}{r_{12}} | 1s_1 1s_2 \rangle$$

$$= \langle 1s_1 | \hat{h}_1 | 1s_1 \rangle + \langle 1s_2 | \hat{h}_2 | 1s_2 \rangle + \langle 1s_1 1s_2 | \frac{1}{r_{12}} | 1s_1 1s_2 \rangle$$

$$= \frac{1}{2}\alpha^2 - Z\alpha + \frac{1}{2}\alpha^2 - Z\alpha + \frac{5\alpha}{8} = \alpha^2 - 2\alpha \left(Z - \frac{5}{16}\right)$$
Use cosine rule to express r_{12} in terms of r_1 , r_2 and θ_2

This function has a minimum value at $\alpha = Z - \frac{5}{16}$

$$\mathcal{E} = -\left(Z - \frac{5}{16}\right)^2 = -2.85 \text{ Hartree} \qquad \text{cf. } 2E_{\text{H}} = -2.00 \text{ Hartree} \\ E_{\text{He}}(\text{exact}) = -2.90 \text{ Hartree} \qquad \mathcal{E}(\alpha = Z) = -2.75 \text{ Hartree} \end{cases}$$

Paired and Unpaired Electron Configurations

Example: the first excited state of He: 1s2s

If the spins are "paired" = singlet state i.e. spin function antisymmetric the orbital function must be symmetric

If the spins are "unpaired" = triplet state i.e. spin function symmetric the orbital function must be antisymmetric

$$\begin{split} \phi &= (1s2s + 2s1s)/\sqrt{2} \qquad \qquad \phi = (1s2s - 2s1s)/\sqrt{2} \\ \hat{H} &= \hat{h}_1 + \hat{h}_2 + \frac{1}{r_{12}} \\ &\langle \hat{h}_1 \rangle_{\pm} = \frac{1}{2} \langle 1s2s | \hat{h}_1 | 1s2s \rangle \pm \frac{1}{2} \langle 1s2s | \hat{h}_1 | 2s1s \rangle \pm \frac{1}{2} \langle 2s1s | \hat{h}_1 | 1s2s \rangle + \frac{1}{2} \langle 2s1s | \hat{h}_1 | 2s1s \rangle \\ &= \frac{1}{2} \langle 1s | \hat{h}_1 | 1s \rangle \pm 0 \pm 0 + \frac{1}{2} \langle 2s | \hat{h}_1 | 2s \rangle = \frac{1}{2} \varepsilon_{1s} + \frac{1}{2} \varepsilon_{2s} = \langle \hat{h}_2 \rangle_{\pm} \\ &\langle \frac{1}{r_{12}} \rangle_{\pm} = \frac{1}{2} \langle 1s2s | \frac{1}{r_{12}} | 1s2s \rangle \pm \frac{1}{2} \langle 1s2s | \frac{1}{r_{12}} | 2s1s \rangle \pm \frac{1}{2} \langle 2s1s | \frac{1}{r_{12}} | 1s2s \rangle + \frac{1}{2} \langle 2s1s | \frac{1}{r_{12}} | 2s1s \rangle \\ \end{split}$$

 $= \langle 1s \, 2s \left| \frac{1}{2} \right| | 1s \, 2s \rangle \pm \langle 1s \, 2s \left| \frac{1}{2} \right| | 2s \, 1s \rangle = J_{1,2} \pm K_{1,2}$

$$|r_{12}| = \varepsilon_{1s} + \varepsilon_{2s} + J_{1s2s} + K_{1s2s} = \varepsilon_{1s} + \varepsilon_{2s} + J_{1s2s} - K_{1s2s} = \varepsilon_{1s} + \varepsilon_{2s} + J_{1s2s} + \varepsilon_{2$$

The Exchange Interaction

The exchange integral K has no classical counterpart.

It introduces correlation into the spatial distribution of electrons.

Consider a two-electron system in the triplet state

$$\Psi_{\mathrm{T}} = \frac{1}{\sqrt{2}} \Big[\phi_1(r_1) \phi_2(r_2) - \phi_2(r_1) \phi_1(r_2) \Big]$$

Probability density

$$P(r_{1}, r_{2}) = \frac{1}{2} \Big[\phi_{1}^{*}(r_{1}) \phi_{1}(r_{1}) \phi_{2}^{*}(r_{2}) \phi_{2}(r_{2}) + \phi_{2}^{*}(r_{1}) \phi_{2}(r_{1}) \phi_{1}^{*}(r_{2}) \phi_{1}(r_{2}) \Big] \\ - \frac{1}{2} \Big[\phi_{1}^{*}(r_{1}) \phi_{2}(r_{1}) \phi_{2}^{*}(r_{2}) \phi_{1}(r_{2}) + \phi_{2}^{*}(r_{1}) \phi_{1}(r_{1}) \phi_{1}^{*}(r_{2}) \phi_{2}(r_{2}) \Big]$$

If $r_1 = r_2$ the terms cancel and P = 0.

 \Rightarrow It is not possible to find two electrons at the same place in a triplet state.

The Self-consistent Field Method

Think of the probability distribution of an individual electron as its charge density.

Then the potential energy that electron 1 experiences at r_1 due to electron 2 is

Define a one-electron Hamiltonian

In principle, the Shrödinger equation can be solved to find the orbital energy ε_1 and the wave function ϕ .

$$V_{1}^{\text{eff}}(r_{1}) = \left\langle \phi^{*}(r_{2}) \left| \frac{1}{r_{12}} \right| \phi(r_{2}) \right\rangle$$
$$\hat{H}_{1}^{\text{eff}}(r_{1}) = -\frac{1}{2} \nabla_{1}^{2} \psi - \frac{Z}{r_{1}} \psi + V_{1}^{\text{eff}}(r_{1})$$

$$\hat{\mathbf{H}}_{1}^{\mathrm{eff}}(r_{1})\phi(r_{1}) = \varepsilon_{1}\phi(r_{1})$$

Problem: We don't know the electrostatic potential because it depends on $\phi^*(r_2)\phi(r_2)$ (and others if more than 2 electrons).

Procedure: Guess the form of $\phi(\mathbf{r})$ and use it as an estimate of V_1 . Solve the S eqn to get $\phi_1(\mathbf{r})$ which can be used for V_2 . Solve the S eqn to get $\phi_2(\mathbf{r})$ which can be used for V_1 . Iterate until the $\phi(\mathbf{r})$ are self-consistent (i.e. input = output)

Such orbitals are Hartree-Fock orbitals.

Variation of Linear Combinations of Orbitals – 1

Take a trial function χ written as a linear combination of independent functions ψ_i .

$$\chi = \sum_{j} c_{j} \psi_{j}$$

In general, the basis set functions are not orthogonal.

$$\langle \chi | \hat{\mathbf{H}} | \chi \rangle = \sum_{j} c_{j} \langle \chi | \hat{\mathbf{H}} | \Psi_{j} \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \langle \Psi_{i} | \hat{\mathbf{H}} | \Psi_{j} \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \langle i | \hat{\mathbf{H}} | j \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \hat{\mathbf{H}}_{ij}$$
Note that since $\hat{\mathbf{H}}$ is Hermitian, $\hat{\mathbf{H}}_{ij} = \hat{\mathbf{H}}_{ji}$

$$\langle \chi | \chi \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \langle \Psi_{i} | \Psi_{j} \rangle = \sum_{i} \sum_{j} c_{i}^{*} c_{j} \mathbf{S}_{ij}$$
Sig is an overlap integral
$$\mathcal{E} = \frac{\langle \chi | \hat{\mathbf{H}} | \chi \rangle}{\langle \chi | \chi \rangle} = \frac{\sum_{i} \sum_{j} c_{i}^{*} c_{j} \hat{\mathbf{H}}_{ij}}{\sum_{i} \sum_{j} c_{i}^{*} c_{j} \mathbf{S}_{ij}}$$
needs to be minimized by adjusting the coefficients c_{i} .
Rewriting,
$$\sum_{i} \sum_{j} c_{i}^{*} c_{j} \hat{\mathbf{H}}_{ij} - \mathcal{E} \sum_{i} \sum_{j} c_{i}^{*} c_{j} \mathbf{S}_{ij} = 0$$
or
$$\sum_{i} \sum_{j} c_{i}^{*} c_{j} (\hat{\mathbf{H}}_{ij} - \mathcal{E} \mathbf{S}_{ij}) = 0$$

Variation of Linear Combinations of Orbitals – 2

$$\sum_{i}\sum_{j}c_{i}c_{j}\left(\mathbf{H}_{ij}-\mathcal{E}\mathbf{S}_{ij}\right)=0$$

coefficients assumed real

Differentiate
with respect to
$$c_1$$

$$2c_1(H_{11} - \mathcal{E} S_{11}) + \sum_{j \neq 1} c_j(H_{1j} - \mathcal{E} S_{1j}) - \frac{\partial \mathcal{E}}{\partial c_1} \sum_i \sum_j c_i c_j S_{ij} = 0$$
For $\frac{\partial \mathcal{E}}{\partial c_1} = 0$,
$$2c_1(H_{11} - \mathcal{E} S_{11}) + \sum_{j \neq 1} c_j(H_{1j} - \mathcal{E} S_{1j}) = 0$$
In general,
$$\frac{\partial \mathcal{E}}{\partial c_i} = 0 \implies 2\sum_j c_j(H_{ij} - \mathcal{E} S_{ij}) = 0$$
H_{ij} = H_{ji},
 $S_{ij} = S_{ji}$
The set of *n* Secular Equations
$$\sum_j c_j(H_{ij} - \mathcal{E} S_{ij}) = 0$$
for *i* = 1,2,3,...*n*
has non-trivial solutions provided
$$det |H_{ij} - \mathcal{E} S_{ij}| = 0$$
a trivial solution
has all $c_j = 0$.

Note: The above condition is also apparent if Cramer's rule is used to solve the set of *n* simultaneous equations. This is more obvious from the matrix formulation.

Simplifying the Secular Determinant

$$\det |\mathbf{H}_{ij} - \mathcal{E} \mathbf{S}_{ij}| = \begin{vmatrix} \mathbf{H}_{11} - \mathcal{E} \mathbf{S}_{11} & \mathbf{H}_{12} - \mathcal{E} \mathbf{S}_{12} & \dots & \mathbf{H}_{1n} - \mathcal{E} \mathbf{S}_{1n} \\ \mathbf{H}_{21} - \mathcal{E} \mathbf{S}_{21} & \mathbf{H}_{22} - \mathcal{E} \mathbf{S}_{22} & \dots & \mathbf{H}_{2n} - \mathcal{E} \mathbf{S}_{2n} \\ \vdots & \vdots & \ddots & \dots \\ \mathbf{H}_{n1} - \mathcal{E} \mathbf{S}_{n1} & \mathbf{H}_{n2} - \mathcal{E} \mathbf{S}_{n2} & \dots & \mathbf{H}_{nn} - \mathcal{E} \mathbf{S}_{nn} \end{vmatrix} = 0$$

In principle, by manipulating rows and columns it is possible to achieve a diagonal form:

$$\begin{vmatrix} g_{11} - \mathcal{E} & 0 & \dots & 0 \\ 0 & g_{22} - \mathcal{E} & \dots & 0 \\ \vdots & \vdots & \ddots & \dots \\ 0 & 0 & \dots & g_{nn} - \mathcal{E} \end{vmatrix} = 0$$

Evaluation of the determinant gives an equation of order n in \mathcal{E}

$$(g_{11}-\mathcal{E})(g_{22}-\mathcal{E})\dots(g_{nn}-\mathcal{E})=0$$

which can be solved to give *n* eigenvalues, each corresponding to one of *n* eigenfunctions. These orthogonal eigenfunctions are linear combinations of the original basis set ψ .

Diagonalization is conveniently achieved using matrix algebra.

Variation of Linear Combinations – Example

Problem: The particle in a box with infinitely high walls... again!

Basis set: $f_1 = z(1-z)$ and $f_2 = z^2(1-z^2)$ where z = x/a

Trial functions: $\chi = c_1 f_1 + c_2 f_2$ two sets of coefficients, two functions, two energies

Task: Solve
$$\begin{vmatrix} H_{11} - \mathcal{E} S_{11} & H_{12} - \mathcal{E} S_{12} \\ H_{21} - \mathcal{E} S_{21} & H_{22} - \mathcal{E} S_{22} \end{vmatrix} = 0$$

$$S_{11} = \int_{0}^{1} z^{2} (1 - z)^{2} dz = \frac{1}{3} - \frac{1}{2} + \frac{1}{5} = \frac{1}{30}, \qquad S_{12} = S_{21} = \frac{1}{4} - \frac{3}{5} + \frac{1}{2} - \frac{1}{7} = \frac{1}{140}, \qquad S_{22} = \frac{1}{630}$$

$$H_{11} = -\frac{1}{2} \int_{0}^{1} (z - z^{2}) \frac{d^{2}}{dz^{2}} (z - z^{2}) dz = \frac{1}{6}, \qquad H_{12} = H_{21} = \frac{1}{3} - \frac{1}{2} + \frac{1}{5} = \frac{1}{30}, \qquad H_{22} = \frac{1}{105}$$

$$\begin{vmatrix} \frac{1}{6} - \frac{1}{30} \mathcal{E} & \frac{1}{30} - \frac{1}{140} \mathcal{E} \\ \frac{1}{30} - \frac{1}{140} \mathcal{E} & \frac{1}{105} - \frac{1}{630} \mathcal{E} \end{vmatrix} = 0 \qquad \Rightarrow \qquad \begin{vmatrix} 70 - 14\mathcal{E} & 14 - 3\mathcal{E} \\ 42 - 9\mathcal{E} & 12 - 2\mathcal{E} \end{vmatrix} = 0 \qquad \Rightarrow \qquad \mathcal{E}^{2} - 56\mathcal{E} + 252 = 0$$

$$\mathcal{E} = 28 \pm \sqrt{532} = \begin{cases} 4.93487 \text{ a.u.} = 1.0000147(\pi^{2}h^{2}/2ma^{2}) \qquad E_{1} = 1 \\ 51.0651 \text{ a.u.} = 10.3480(\pi^{2}h^{2}/2ma^{2}) \qquad E_{3} = 9 \end{cases}$$
set has only even functions

Matrices in Quantum Mechanics

The unit matrix \mathbb{I} has $I_{ij} = \delta_{ij}$

A diagonal matrix has all $A_{ij} = 0, i \neq j$

The transpose has rows and columns switched $A_{ij}^{T} = A_{ji}$ reflect about t

reflect elements about the diagonal

The adjoint = complex conjugate of transpose $A_{ij}^{\dagger} = A_{ji}^{*}$

A unitary matrix has $A^{-1} = A^{\dagger} \iff A^{\dagger} A = I$

A Hermitian matrix is self adjoint $A_{ij}^{\dagger} = A_{ij} \iff A_{ji}^{*} = A_{ij}$

A Hermitian matrix has real eigenvalues

The eigenvectors of a Hermitian matrix belonging to distict eigenvalues are orthogonal. Any Hermitian matrix can be diagonalized. The eigenvectors "span" the space. Hermitian matrices commute if they are diagonalized in the same basis.

Integrals, Brackets and Matrices

$$\int \Psi_1^* \Psi_2 \, \mathrm{d}\tau \equiv \langle \Psi_1 | \Psi_2 \rangle \equiv (\Psi_1^T) \cdot (\Psi_2) \equiv (\dots c_i \dots) \begin{pmatrix} \vdots \\ c_j \\ \vdots \end{pmatrix}$$

$$\int \psi_1^* \hat{\mathbf{H}} \psi_2 \, d\tau \equiv \langle \psi_1 | \hat{\mathbf{H}} | \psi_2 \rangle \equiv (\dots c_i \dots) \begin{pmatrix} \vdots \\ \dots \\ H_{ij} \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ c_j \\ \vdots \end{pmatrix}$$

$$\Psi_1 = \sum_i c_i \phi_i, \quad \Psi_2 = \sum_j c_j \phi_j, \quad H_{ij} = \langle \phi_i | \hat{H} | \phi_j \rangle \equiv \int \phi_1^* \hat{H} \phi_2 d\tau$$

Matrix Representation of Spin Operators

Consider a simple spin-¹/₂ system, such as an electron, a proton, or a muon.

Take as basis set, the eigenfunctions of $\hat{\mathbf{S}}_z$: $\hat{\mathbf{S}}_z |\alpha\rangle = \frac{1}{2} |\alpha\rangle$ $\hat{\mathbf{S}}_z |\beta\rangle = -\frac{1}{2} |\beta\rangle$

The matrix elements are $\langle \alpha | \hat{\mathbf{S}}_z | \alpha \rangle = \frac{1}{2}$ $\langle \beta | \hat{\mathbf{S}}_z | \beta \rangle = -\frac{1}{2}$ $\langle \alpha | \hat{\mathbf{S}}_z | \beta \rangle = \frac{1}{2} \langle \alpha | \beta \rangle = 0$ $\langle \beta | \hat{\mathbf{S}}_z | \alpha \rangle = 0$ \Rightarrow $\hat{\mathbf{S}}_z = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Similarly,
$$\hat{S}^2 |\alpha\rangle = s(s+1)|\alpha\rangle = \frac{3}{4}|\alpha\rangle$$

 $\hat{S}^2 |\beta\rangle = \frac{3}{4}|\beta\rangle$

$$\Rightarrow \hat{S}^2 = \frac{3}{4} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = \hat{S}_z \hat{S}^2$$

$$\begin{bmatrix} \hat{S}^2, \hat{S}_z \end{bmatrix} = 0$$

$$\hat{\mathbf{S}}_{x} |\alpha\rangle = \frac{1}{2} |\beta\rangle \qquad \hat{\mathbf{S}}_{x} |\beta\rangle = \frac{1}{2} |\alpha\rangle \qquad \hat{\mathbf{S}}_{x} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \hat{\mathbf{S}}_{y} = \frac{1}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \qquad \alpha \text{ and } \beta \text{ are not} \\ \text{ eigenfunctions} \\ \text{ of } \hat{\mathbf{S}}_{x} \text{ and } \hat{\mathbf{S}}_{y} \\ \hat{\mathbf{S}}_{x} \hat{\mathbf{S}}_{y} = \frac{1}{4} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} = \frac{1}{4} i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \\ \hat{\mathbf{S}}_{y} \hat{\mathbf{S}}_{x} = \frac{1}{4} i \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \qquad \Rightarrow \qquad \begin{bmatrix} \hat{\mathbf{S}}_{x}, \hat{\mathbf{S}}_{y} \end{bmatrix} = \frac{1}{2} i \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} = i \hat{\mathbf{S}}_{z}$$

Matrix Diagonalization of a Spin Operator

$$\hat{\mathbf{S}}_{x} = \frac{1}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \qquad \text{Set up the} \\ \text{secular equation:} \qquad \det \begin{pmatrix} 0 - \lambda & \frac{1}{2} \\ \frac{1}{2} & 0 - \lambda \end{pmatrix} = \lambda^{2} - \frac{1}{4} = 0 \quad \text{and solve:} \\ \lambda = \pm \frac{1}{2} \end{pmatrix}$$

To find the coefficients of the eigenvectors, write out the simultaneous equations Solve for coefficients and normalize for each eigenvalue.

For
$$\lambda = -\frac{1}{2}$$
 $\begin{pmatrix} (0+\frac{1}{2})c_{11} + \frac{1}{2}c_{12} = 0 \\ \frac{1}{2}c_{11} + (0+\frac{1}{2})c_{12} = 0 \end{pmatrix}$ $c_{11} = -c_{12}$ $c_{11}^2 + c_{12}^2 = 1$ $c_{11} = \frac{1}{\sqrt{2}} = -c_{12}$

For
$$\lambda = \frac{1}{2}$$
 $\begin{pmatrix} 0 - \frac{1}{2} \end{pmatrix} c_{21} + \frac{1}{2} c_{22} = 0$
 $\frac{1}{2} c_{21} + (0 - \frac{1}{2}) c_{22} = 0$ $c_{21} = c_{22}$ $c_{21}^2 + c_{22}^2 = 1$ $c_{21} = \frac{1}{\sqrt{2}} = c_{22}$

$$\begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad \qquad \frac{1}{4} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix}$$

or $\begin{pmatrix} \Psi_{1} \\ \Psi_{2} \end{pmatrix} = \frac{1}{\sqrt{2}} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} \qquad \qquad \frac{1}{4} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} = \frac{1}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$
arbitrary labelling of wave functions

 $\hat{\mathbf{S}}_x$ is diagonal in the new basis