The Variation Principle

The variational method

The energy calculated using an approximate wave function
cannot be less than the true energy of the system.

For the exact wave function s E = (vlilw)
(wlv)
but for a trial wave function M —E>E

vara,

If % is a function of one or more adjustable parameters these can be optimized to
give a minimum value for £.

If % has the same form as y then T can be optimized to give the true E.
Slater-type orbitals (STO): ¢, =Nr' e F By g N le Ty

Im

Gaussian-type orbitals (GTO): ¢, = Nx'y/z" g "

Linear combination of atomic orbitals (LCAO): L= Zci¢i



The Variation Principle — Justification

Assume that a trial function  can be

written as a linear combination of the
true eigenfunctions ;.

X:ZC,'\VJ‘
j

where Hy, =Ey,

ZZC.C, (wilAlw;)

since (i|j) =3,

1

where E, is the lowest energy eigenvalue

Then (Al
=sz:cichj (il j)
:Zj:c’;chj

But c’;cj :|cj|2 >0

and E, > E,

¢y > cici(Ej—Eo)

>0
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The Variation Method — An Example

This example tests a known problem with a trial function .
that does not have the same form as the known solution.

Problem: The particle in a box with infinitely high walls. 05 4

The known solution is a sine function.

Trial function: y=x(a-x)/a* aninverted parabola . |
0 0.5 1
x/a
. W S(x x2)d?(x X 1a ,
<x|H|x>=—%J(g——zjd7[g—;]dx (xl) =7 ] (ax—x*) dx
0
I dx= T _a(l_l+lj_i
0 6ma 3 2 5) 30
E_<x|ﬁ|x>_5h2_10 n’h’ _1013E only 1.3% higher
- (x|x) “ma? n?l2ma?) than the true value

Note: The only adjustment in this example was in the normalization (wave amplitude).



The Variation Method applied to the H Atom

This example tests a known problem with a trial function that does have the correct form.

In atomic units the Schrddinger equation —EVZ L c
for a 1-electron H-like atom is 2 v r\" v
: . Car , 0° 20
Trial function: yr=Ne no angular part,so V' =—+——
o ror
VZe—ar_ Ze—ocr_z_a' —ar
r
0 2 2
Z 1 1 Z N°m| 1
Ay =N [l - 22 e‘Z“r4nr2dr:N2n[——+———}= [—a—z}
Cell) 0( 2 r rj 200 o o o’ | 2
<x|x>:sz4nr2e‘2“rdr:N2£
0

EZ%Z%GZ—ZQ This function has a minimum valueat o =2
XX

1 L i . .
t = —EZZ which is the exact value since the trial function had the correct form



The Variation Method applied to the He Atom

This is a real problem with hitherto unknown solution.

adi i 1 Z 1 Z 1
The_Schr_o_dmge_r equation can v \If——\lf——V v—Zy+r—y=Ey
be simplified with 1-electron 2 o2 Lo

H-like terms ~ ~ 1
hy +hy +—y=Ey

12

Trial function: y =|1s,1s,) where [1s)=Ne ™" H-like

- ~ 1
£ = (15,15, |y [15,15, ) + (15, 1s, |, [15,15, ) + (15, Is, |—|1s,1s, )
12
- 1
= (Is, |h|1s,) + (15, |h, |15, ) + (15, 15, [ —{1s,5, ) _
I Use cosine rule to
express ry, in terms
:la —Zoc+1oc —Zoc+5—a—oc —20{2—3] of r;, r, and 6,
2 2 8 16
This function has a minimum valueat a=72-32
t :_(z 16) — —2.85 Hartree cf. 2E, =-2.00 Hartree

E,. (exact) =—2.90 Hartree £ (a=2Z)=-2.75 Hartree



Paired and Unpaired Electron Configurations

Example: the first excited state of He: 1s2s

If the spins are “paired” = singlet state If the spins are “unpaired” = triplet state
I.e. spin function antisymmetric I.e. spin function symmetric
the orbital function must be symmetric the orbital function must be antisymmetric
¢ = (1525 + 2515 )//2 ¢ = (1s2s - 2s1s)//2
S |
H=h+h, +—
r12

N

(1s2s|fy | 251s) +

N~

(2s1s|fy [15 25) +

N

(R), =s2sffis2s) (2515 2585

:%<1S|ﬁ1|15)i 0+ O+%<25|ﬁl|25> = 3815 T 38 = <h2>

t

<l > =1(1s2s 1 152s) +1(1s2s 1 2s1s)+1(2s1s 1 152s) +4(2s1s 1 2s1s)
Mo/, 12 M2 12 12
=(1s2s 1 152s) £ (1525 1 2s1s) = J, 5, + Ko,
12 W)
Esinglet = 815 + 823 + ‘JlsZS + KlsZs Etriplet = 813 + 823 + ‘]1323 o KlsZs Etriplet < Esinglet
\

Coulomb integral Exchange integral because J and K >0



The Exchange Interaction

The exchange integral K has no classical counterpart.
It introduces correlation into the spatial distribution of electrons.

Consider a two-electron

system in the triplet state = L0 ()02 () =6 (1) ()
Probability P(rl’rZ):%[(I)I(rl)d)l(rl)(l);(rZ)d)Z(r2)+(|);(rl)(I)Z(rl)(I)I(rZ)(I)l(rZ):'
density 301 (R (1) 02 (7)1 (1) + 05 (1) s (1) 1 (12 ) 02 (1) |

If r, =, the terms cancel and P = 0.
= It is not possible to find two electrons at the same place in a triplet state.

TRIPLET \ SINGLET

e.g. 2 particles in a 1-D box,
one with n =1, the othern=2
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The Self-consistent Field Method

Think of the probability distribution of an individual electron as its charge density.

¢(r2)>

Then the potential energy that electron \/eff ()= < o (r,)
1 1) 2

1 experiences at r, due to electron 2 is I,
~ 1 Z
Define a one-electron Hamiltonian H‘fﬁ (rl) = —EVf\V _TW +Vleff (rl)
1

In principle, the Shrodinger equation A
can be solved to find the orbital H™ (r)o(r)=g,0(1)
energy €, and the wave function ¢.

Problem: We don’t know the electrostatic potential because it depends on ¢ (1, ) ()
(and others if more than 2 electrons).

Procedure: Guess the form of ¢(r) and use it as an estimate of V,.
Solve the S egn to get ¢,(r) which can be used for V,,.
Solve the S eqn to get ¢,(r) which can be used for V.
Iterate until the ¢(r) are self-consistent (i.e. input = output)

Such orbitals are Hartree-Fock orbitals.



Variation of Linear Combinations of Orbitals — 1

Take a trial function  written as a linear v=Ycy,
combination of independent functions ;. J

In general, the basis set functions are not orthogonal.

X|H|X ZC X|H|W> chl*cj<wl||q|\vl>:zzcl*cj<l|l:l|J>:ZZCI*CJIqu

~

Note that since H is Hermitian, H; =H;
(xlx)= ZZC:C,- <\Vi |\V,-> =>>cc;S; S; is an overlap integral
i j i
2. 2.6 H

£ il _ T3

(x|) ZZCI i i
i
Rewriting, > ce,H —ZY > ce. S, =0
T T
i

needs to be minimized by adjusting the coefficients c;.



Variation of Linear Combinations of Orbitals — 2

> > cc;(H-£5S;)=0 coefficients
i assumed real

Differentiate ot B
with respect to ¢, 26, (Hy gsll)+j2¢;‘cj (Hi-2sy) ac, szlcicj % =0
For Ezo, 2c1(H11—ESﬂ)+ZCj(Hlj—ES”):O
6C1 j#1
In general, %:0 = 2)¢;(H;-£S;)=0 H,=H,, S,=S,
| j

The set of n Secular Equations D ¢;(Hy—Z'S;)=0 for i=1,2,3,...n
j

a trivial solution

has non-trivial solutions provided det|Hij—ESij| =0 has all c. = 0
j - .

Note: The above condition is also apparent if Cramer’s rule is used to solve the set of
n simultaneous equations. This is more obvious from the matrix formulation.



Simplifying the Secular Determinant
Hll_fsll le—fslz Hln_fsln
H,-#S,, H,-£S, ... H,—ZS
det|Hij—ESij| = 2 _ o
Hnl_gsnl Hn2_£Sn2 Hnn_gsnn
In principle, by manipulating On - 0 0
rows and columns it is possible O 92 N 4 . 0 ~0
to achieve a diagonal form: : 5 :
0 0 e 9 —F

Evaluation of the determinant

gives an equation of ordernin € (911_5)(922 —5)---(gnn —E):O

which can be solved to give n eigenvalues, each corresponding to one of n eigenfunctions.
These orthogonal eigenfunctions are linear combinations of the original basis set .

Diagonalization is conveniently achieved using matrix algebra.



Variation of Linear Combinations — Example

Problem: The particle in a box with infinitely high walls... again!
Basisset: f,=z(1-z) and f,=2°(1-z%) where z=x/a

Trial functions:  y=c,f,+c,f, two sets of coefficients, two functions, two energies

H.-£S,, H,—&S
Task: Solve H o 121 =
H21—5521 sz_gszz
1
2
Sllzjzz(l_z) dz:%_%_"%:%’ 8122521:%_%""%_%:%' 822:6_;@
0
; 2 d’ 2
Hy =—1[(z-2 )F(z—z Jdz=1, H,=H,=1-1+1=1, H,, =
0

70-142 14-3¢
42-9F 12-2F

- = ‘ ‘=0 = F2_56F +252=0
4.93487 a.u. =1.0000147(r?h?/2ma? E =1 B. -
£ =28++/532 —{ (7" ) 1 N.B. the basis

51.0651 a.u. =10.3480(n*h?/2ma?) E,=9  sethasonly
even functions



Matrices in Quantum Mechanics

The unit matrix Lhas I, =9
A diagonal matrix hasall ~ A; =0, 1+ ]

reflect elements
A; =A

The transpose has rows and columns switched i :
about the diagonal

*

The adjoint = complex conjugate of transpose AiTj =A;
A unitary matrix has A7'=A" < ATA=]|

A Hermitian matrix is self adjoint AiTj =A; © A’}i =A;
A Hermitian matrix has real eigenvalues

The eigenvectors of a Hermitian matrix belonging to distict eigenvalues are orthogonal.

Any Hermitian matrix can be diagonalized. The eigenvectors “span” the space.

Hermitian matrices commute if they are diagonalized in the same basis.



Integrals, Brackets and Matrices

.[\VI‘Vsz = <\V1|\|’2> = (\V1T)°(\V2) = ( G ){CJJ

j\uililwzdfc = (w.JAlv,) = (...c )[ I_iij ]{CJ]

V=D G wo=pocidn Hy=(olAle;) = [¢Ho,do



Matrix Representation of Spin Operators

Consider a simple spin-Y¥2 system, such as an electron, a proton, or a muon.

Take as basis set, the eigenfunctions of S, : S lay=2la) S, |B)=-1%|B)

|

z

The matrix elementsare ~ (alS,la)=1 (B[S, |B) =—1 8 { Oj
(IS, B)=4(al)=0 (BlS,ly=0 — ° *lo

.. a2 _ _
Similarly, §|a>—s(s+1)|oc>—%|oc> S &os 10 S 10 _5 &
§°(p)=3Ip) 01 .
[éz,éz]:()

|

|_B> SX|B>:%|0‘_> 3 EO 1) & (0 —ij o and [3 are not

I 0 eigenfunctions
of S, and S,



Matrix Diagonalization of a Spin Operator

Set up the
secular equation:

. (01
S

det(

N

0-% 4

j: )2 -1=0 and solve:

— 41
ho=+1

To find the coefficients of the eigenvectors, write out the simultaneous equations

for each eigenvalue.
1 1 —
(O+§)C11 +2Cp = 0

ic,+(0+%)c, =0

k:% (0—%)021+%C22=0

50, +(0-2)c, =0
e
o (2556 26)

arbitrary labelling of wave functions

M|k

M|F

C,=—Cp

C;y =Cyy

S
o - O

I
[N
(TN

!
S

X

o -

o -

2 2
C,;+C,=1

C, +C,, =1
1 1) 1
-1 1) 2
1 1 1
1 -1) 2

Solve for coefficients and normalize

i % =—Cp
Co = % =Cy
-1 0
0 1
1 0
0 -1

Is diagonal in the new basis



