
The Variation Principle
The variational method

The energy calculated using an approximate wave function 
cannot be less than the true energy of the system.
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Ebut for a trial wave function c

If c is a function of one or more adjustable parameters these can be optimized to 
give a minimum value for E.

If c has the same form as y then E can be optimized to give the true E.
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The Variation Principle − Justification
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The Variation Method − An Example
This example tests a known problem with a trial function 
that does not have the same form as the known solution.

Problem: The particle in a box with infinitely high walls. 

( ) 2/x a x aχ = −Trial function: an inverted parabola

The known solution is a sine function.
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than the true value

Note: The only adjustment in this example was in the normalization (wave amplitude).
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The Variation Method applied to the H Atom
This example tests a known problem with a trial function that does have the correct form.

In atomic units the Schrödinger equation 
for a 1-electron H-like atom is

e rN −αχ =Trial function: no angular part , so
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The Variation Method applied to the He Atom

The Schrödinger equation can 
be simplified with 1-electron 
H-like terms
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This is a real problem with hitherto unknown solution.

Use cosine rule to 
express r12 in terms 
of r1, r2 and q2
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Paired and Unpaired Electron Configurations

If the spins are “paired” = singlet state 
i.e. spin function antisymmetric
the orbital function must be symmetric

singlet 1s 2s 1s2s 1s2s triplet 1s 2s 1s2s 1s2s triplet singletE J K E J K E E= ε + ε + + = ε + ε + − <

Example: the first excited state of He: 1s2s

If the spins are “unpaired” = triplet state 
i.e. spin function symmetric
the orbital function must be antisymmetric
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Coulomb integral Exchange integral because J and K > 0



The Exchange Interaction
The exchange integral K has no classical counterpart.
It introduces correlation into the spatial distribution of electrons.
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Consider a two-electron 
system in the triplet state

Probability 
density

If r1 = r2 the terms cancel and P = 0.
It is not possible to find two electrons at the same place in a triplet state.⇒

x1

x2

e.g. 2 particles in a 1-D box,
one with n = 1, the other n = 2

x1

x2

TRIPLET SINGLET

The node at x1 = x2 is 
known as the Fermi hole.



The Self-consistent Field Method
Think of the probability distribution of an individual electron as its charge density.

Then the potential energy that electron 
1 experiences at r1 due to electron 2 is ( ) ( ) ( )eff *
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Define a one-electron Hamiltonian ( ) ( )eff 2 eff
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In principle, the Shrödinger equation 
can be solved to find the orbital 
energy e1 and the wave function f.

( ) ( ) ( )eff
1 1 1 1 1Ĥ r r rφ = ε φ

Problem: We don’t know the electrostatic potential because it depends on 
(and others if more than 2 electrons).

( ) ( )*
2 2r rφ φ

Procedure: Guess the form of f(r) and use it as an estimate of V1.
Solve the S eqn to get f1(r) which can be used for V2.
Solve the S eqn to get f2(r) which can be used for V1.
Iterate until the f(r) are self-consistent (i.e. input = output)

Such orbitals are Hartree-Fock orbitals.



Variation of Linear Combinations of Orbitals − 1
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Take a trial function c written as a linear 
combination of independent functions yj.
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Variation of Linear Combinations of Orbitals − 2

Differentiate 
with respect to c1
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has non-trivial solutions provided det H S 0ij ij− =E a trivial solution 
has  all cj = 0.

Note: The above condition is also apparent if Cramer’s rule is used to solve the set of 
n simultaneous equations.  This is more obvious from the matrix formulation.
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Simplifying the Secular Determinant
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In principle, by manipulating 
rows and columns it is possible 
to achieve a diagonal form:
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Evaluation of the determinant 
gives an equation of order n in E ( )( ) ( )11 22 0nng g g− − − =…E E E

which can be solved to give n eigenvalues, each corresponding to one of n eigenfunctions.  
These orthogonal eigenfunctions are linear combinations of the original basis set y.

Diagonalization is conveniently achieved using matrix algebra.



Variation of Linear Combinations − Example
Problem: The particle in a box with infinitely high walls… again!

Basis set: ( ) ( )2 2
1 2and wh 1 e1 re /f z z f z z z x a= − = − =

1 1 2 2c f c fχ = +Trial functions: two sets of coefficients, two functions, two energies
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Matrices in Quantum Mechanics

Iij ij= δThe unit matrix I has

A diagonal matrix has all A 0,ij i j= ≠

TA Aij ji=The transpose has rows and columns switched reflect elements 
about the diagonal

The adjoint = complex conjugate of transpose † *A Aij ji=

A Hermitian matrix is self adjoint † *A A A Aij ij ji ij= ⇔ =

A Hermitian matrix has real eigenvalues

Any Hermitian matrix can be diagonalized. The eigenvectors “span” the space.

The eigenvectors of a Hermitian matrix belonging to distict eigenvalues are orthogonal.

A unitary matrix has 1 † †A A A A I− = ⇔ =

Hermitian matrices commute if they are diagonalized in the same basis.



Integrals, Brackets and Matrices
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Matrix Representation of Spin Operators

Ŝ :z

Consider a simple spin-½ system, such as an electron, a proton, or a muon.

Take as basis set, the eigenfunctions of 1 1
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The matrix elements are 1 1
2 2

1
2

ˆ ˆS S
ˆ ˆS 0 S 0

z z

z z

α α = β β = −

α β = α β = β α =
1
2

1 0
Ŝ
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Ŝ 1

Ŝ
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Matrix Diagonalization of a Spin Operator
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To find the coefficients of the eigenvectors, write out the simultaneous equations 
for each eigenvalue. Solve for coefficients and normalize
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Set up the 
secular equation: and solve:
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1 1 0 1 1 1 1 01 1
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arbitrary labelling of wave functions Ŝx is diagonal in the new basis


