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Muon and Muonium Properties

Negative muon µ− a heavy electron (mass = 207 me)

τ = 2.2 µs in vacuum �

� less in matter because of nuclear capture

spin I = ½

Muonium Mu = µ+e− a light hydrogen atom Mu+ = µ+

Ionization Energy = 13.54 eV H: 13.60 eV

Bohr Radius = 0.532 Ǻ H: 0.529 Ǻ

Positive muon µ+ a light proton (mass = 0.11 mp)

τ = 2.2 µs in vacuum and matter

spin I = ½
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The Periodic Table � Chemistry Department Quilt

http://www.sfu.ca/chemistry/news/pt_quilt/index.htm
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The Simplest Atom
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Muonium � a light isotope of hydrogen

Mu ≡ µ+ e−

reduced mass of Mu = 0.995 mr(H)

ionization potential = 13.539 eV

Bohr radius = 0.532 Å

µ+

e−

The properties of a single 
electron atom are determined 
by the reduced mass
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Pions Decay to Give Muons

At TRIUMF, pions are produced by bombardment of a Be or C production 
target with 500 MeV protons.  We take the positive pions, which decay to 
positive muons:

µπ µ ν+ +→ + In the pion rest frame:

Momentum is conserved:

Spin is conserved:

ν µ← →!

p pµ ν

µ νσ σ
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=−
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Spin and momentum are 
related through helicity: � � 1

.
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For the neutrino,  h = -1, i.e. the spin and momentum are anti-parallel.

Therefore, muons are produced 
with σ and p anti-parallel. 

p pν

ν

µ

µσσ

←
→ ←
 →!

τ = 26 ns
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Muon Beams are Spin Polarized

There are two commonly used types of muon beam:

Surface Muon Beams collect and transport muons which are created from the 
decay of pions at or near the surface of the pion production target.

select these muons to get these spins:

beam line

Decay Muon Beams collect muons from pions which decay in flight.

In the π rest frame only backward { } and forward muons are transported.

In the laboratory frame, both momentum bites travel in the forward direction. 

The forward (momentum) muons (p~180 MeV/c) have backward spin; 
the backward muons (p~80 MeV/c) have forward spin.
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Muon Decay

ee 2.2 sµµ ν ν τ µ+ +→ + + =

The 3 particle decay results in a 
spectrum of positron energies.

The spatial distribution of positrons is 
asymmetric and depends on the muon 
spin polarization.

Consider the decay pattern which 
results in the maximum positron energy:

The e+ is emitted in the direction of the 
muon spin at the moment of decay.  
More generally,

Energy

N

1
max 2

52.8 MeV

E mµ=
=

e+
νµ

νe
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The Muon Lifetime Experiment
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Muon Spin Rotation, µSR

( ) ( )[ ]/
0 e 1 cos backgroundtN N aP t tτ ω φ−= + + +

Apply a magnetic field 
perpendicular to the initial 
spin direction.
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The µSR Histogram
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Subtract the constant background and 
divide out the exponential decay �

� to get the muon asymmetry, 
which represents the time 
dependence of the muon spin 
polarization.

( ) ( )cosaP t tω φ+
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µSR:  Muon Spectroscopy

� spin polarized muon beam

� muons are implanted in the sample

� muons decay: µ+ → e+ + νµ + νe τ = 2.2 µs

� angular distribution of e+ has maximum in muon spin direction

� precession of muon spins in transverse magnetic field

� equivalent to free induction decay in pulsed NMR or ESR

Muon Spin Rotation
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Muonium in supercritical water

Percival, Brodovitch, Ghandi et al., Phys. Chem. Chem. Phys. 1 (1999) 4999
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Muonium in supercritical water
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Muonium in supercritical water at 196 G
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Energy levels of a two spin-½  system

Breit-Rabi diagram
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Muon spin precession in D2O crystal at 227 K
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The high frequency precession is due to �triplet� (F=1) muonium.

The low frequency is due to muons in diamagnetic environments, 
such as MuOD and MuOD2

+
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Muonium precession frequencies in low magnetic field
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Muonium diffuses along the c-axis channels of ice-Ih

Mu

side view view along c channel
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µSR:  Muon spectroscopic methods 

Common features:
� spin polarized muon beam
� muons are implanted in the sample
� muons decay: µ+ → e+ + νµ + νε τ = 2.2 µs
� angular distribution of e+  has maximum in muon spin direction

Muon Spin Rotation µSR  (TF-µSR)
� precession of muon spins in transverse magnetic field
� equivalent to free induction decay in pulsed NMR or ESR

Muon Spin Resonance RF-µSR
� muon spin polarization along magnetic field
� transitions induced by rf field as in conventional NMR

Muon Level Crossing Resonance µLCR  (ALCR)
� mixing of spin levels causes avoided level crossing
� polarization is lost at magnetic fields where level crossing occurs
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RF Transitions in Muonium at Low Magnetic Field
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RFµSR Spectrum of Mu@C60 in C60 Powder
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Endohedral Muonium  Mu@C60

Muonium in a universe of its own
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Muoniated free radicals

e.g.  cyclohexadienyl

µSR:
precession frequencies ⇒ muon hyperfine coupling
µLCR:
resonance fields  ⇒ other nuclear hyperfine couplings

hyperfine couplings  ⇒ distribution of  unpaired electron spin

Temperature dependence of hyperfine couplings
⇒ intramolecular motion
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Fourier power µSR spectrum of tert-butyl

1 M tert-Butanol  280°C  250 bar  11.5 kG
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Avoided Muon Level Crossing Resonance
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tert-Butyl radical in water
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Hyperfine constants are used to map unpaired spin in radicals

Mu13C60 Avoided Level Crossing Resonance
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Percival, Addison-Jones, Brodovitch, Ji, et al., Chem. Phys. Lett., 245 (1995) 90
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H atoms and free radicals in liquids

H is the simplest atom
⇒ fundamental chemistry

H is a constituent of water, hydrocarbons, carbohydrates
⇒ essential chemistry

Chemically speaking, Mu ≡ H 

because it is similar:      tracer, spin label

because it is different :  isotope effects

We study Mu as a substitute for H
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Muonium Chemistry � areas of application

Muonium Mu as probe of local environment
(caged) Fixed cage: fullerenes, silsesquioxanes 

partial: ice
transient: water

Kinetics How fast does it go?
in gases: reaction dynamics
liquids: solvent effects; diffusion vs. activation control

Structure Where does it end up?
(needs e-spin) Free radicals: unpaired spin distribution

Mechanism How does it get there?
Identification of radical products
Transfer of muon polarization

Dynamics Nature is floppy!
intramolecular Temperature dependence of hyperfine constants
intermolecular LCR lineshape analysis
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Further Reading

http://www.sfu.ca/chemistry/news/pt_quilt/index.htm

http://musr.org/cmms.php

http://musr.org/intro/musr/muSRBrochure.pdf


