Muon Spin Spectroscopy Using the Positive Muon to Probe Matter

Paul W. Percival

Department of Chemistry Simon Fraser University and TRIUMF

Muon and Muonium Properties

Negative muon µ⁻	a heavy electron (mass = 207 m _e)	
	τ = 2.2 µs in vacuum	
	less in matter because of nuclear capture	
	spin I = $\frac{1}{2}$	
Positive muon µ ⁺	a light proton (mass = 0.11 m _p)	
	$\tau = 2.2 \ \mu s$ in vacuum and matter	
	spin I = ½	
		.
Muonium Mu = µ⁺e⁻	a light hydrogen atom	$Mu^+ = \mu^+$
	Ionization Energy = 13.54 eV	H: 13.60 eV
	Bohr Radius = 0.532 Å	H: 0.529 Å

The Periodic Table – Chemistry Department Quilt

http://www.sfu.ca/chemistry/news/pt_quilt/index.htm

Paul Percival

NUSC 341, November 2005

The Simplest Atom

Muonium – a light isotope of hydrogen

 $Mu \equiv \mu^+ e^-$

The properties of a single electron atom are determined by the reduced mass

$$\frac{1}{m_{\rm r}} = \frac{1}{m_{\rm N}} + \frac{1}{m_{\rm e}} \approx \frac{1}{m_{\rm e}}$$

i.e. $m_{\rm r} \approx m_{\rm e}$

reduced mass of Mu = 0.995 m_r(H) ionization potential = 13.539 eV Bohr radius = 0.532 Å

Pions Decay to Give Muons

At TRIUMF, pions are produced by bombardment of a Be or C production target with 500 MeV protons. We take the positive pions, which decay to positive muons:

 $\pi^{+} \rightarrow \mu^{+} + \nu_{\mu} \qquad \text{In the pion rest frame:} \qquad \stackrel{\nu}{\longleftarrow} \odot \stackrel{\mu}{\longrightarrow} \rightarrow \\ \tau = 26 \text{ ns} \qquad \text{Momentum is conserved:} \qquad \overrightarrow{p_{\mu}} = -\overrightarrow{p_{\nu}} \\ \text{Spin is conserved:} \qquad \overrightarrow{\sigma_{\mu}} = -\overrightarrow{\sigma_{\nu}} \end{cases}$

Spin and momentum are related through helicity:

$$\hat{h} = rac{ec{\sigma} \cdot ec{p}}{\left|ec{\sigma}.ec{p}
ight|} \qquad \hat{h} \psi = \pm 1 \psi$$

For the neutrino, h = -1, i.e. the spin and momentum are anti-parallel.

Therefore, muons are produced with σ and p anti-parallel.

There are two commonly used types of muon beam:

Surface Muon Beams collect and transport muons which are created from the decay of pions at or near the surface of the pion production target.

Decay Muon Beams collect muons from pions which decay in flight.

In the π rest frame only backward { and forward muons are transported.

In the laboratory frame, both momentum bites travel in the forward direction. The forward (momentum) muons (p~180 MeV/c) have backward spin; the backward muons (p~80 MeV/c) have forward spin.

Paul Percival

Muon Decay

$$\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_e \qquad \tau = 2.2 \ \mu s$$

Ν

The 3 particle decay results in a spectrum of positron energies.

The spatial distribution of positrons is asymmetric and depends on the muon spin polarization.

Consider the decay pattern which results in the maximum positron energy:

The e⁺ is emitted in the direction of the muon spin at the moment of decay. More generally,

$$\frac{dN(E,\theta)}{dE\,d\Omega} = C \big[1 + D(E)\cos\theta \big]$$

The Muon Lifetime Experiment

 $N = N_0 e^{-t/\tau} + \text{background}$

Muon Spin Rotation, µSR

 $N = N_0 e^{-t/\tau} \left[1 + aP(t) \cos(\omega t + \phi) \right] + \text{background}$

Paul Percival

The µSR Histogram

... to get the muon asymmetry, which represents the time dependence of the muon spin polarization.

$$aP(t)\cos(\omega t + \phi)$$

$$N_0 e^{-t/\tau} \left[1 + aP(t) \cos(\omega t + \phi) \right] + B$$

Subtract the constant background and divide out the exponential decay ...

µSR: Muon Spectroscopy

Muon Spin Rotation

- spin polarized muon beam
- muons are implanted in the sample
- muons decay: $\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_e$ $\tau = 2.2 \ \mu s$
- angular distribution of e⁺ has maximum in muon spin direction
- precession of muon spins in transverse magnetic field
- equivalent to free induction decay in pulsed NMR or ESR

Muonium in supercritical water

Percival, Brodovitch, Ghandi et al., Phys. Chem. Chem. Phys. 1 (1999) 4999

Paul Percival

NUSC 341, November 2005

Muonium in supercritical water

400°C, 245 bar, 8 G

Diamagnetic signal subtracted

Muonium in supercritical water at 196 G

Energy levels of a two spin-1/2 system

Breit-Rabi diagram

Muon spin precession in D₂O crystal at 227 K

38 G

The high frequency precession is due to "triplet" (F=1) muonium. The low frequency is due to muons in diamagnetic environments, such as MuOD and $MuOD_2^+$

Muonium precession frequencies in low magnetic field

Magnetic Field

Magnetic Field

Paul Percival

Muonium diffuses along the c-axis channels of ice-Ih

side view

view along *c* channel

Paul Percival

µSR: Muon spectroscopic methods

Common features:

- spin polarized muon beam
- muons are implanted in the sample
- muons decay: $\mu^+ \rightarrow e^+ + \nu_{\mu} + \nu_{\epsilon}$ $\tau = 2.2 \ \mu s$
- angular distribution of e+ has maximum in muon spin direction

Muon Spin Rotation μ SR (TF- μ SR)

- precession of muon spins in transverse magnetic field
- equivalent to free induction decay in pulsed NMR or ESR

Muon Spin Resonance RF-µSR

- muon spin polarization *along* magnetic field
- transitions induced by rf field as in conventional NMR

Muon Level Crossing Resonance µLCR (ALCR)

- mixing of spin levels causes avoided level crossing
- polarization is lost at magnetic fields where level crossing occurs

RF Transitions in Muonium at Low Magnetic Field

Magnetic Field

RFµSR Spectrum of Mu@C₆₀ in C₆₀ Powder

Endohedral Muonium Mu@C₆₀

Muonium in a universe of its own

Muoniated free radicals

Temperature dependence of hyperfine couplings \Rightarrow intramolecular motion

Transverse field muon spin rotation of radicals

Magnetic Field

Fourier power µSR spectrum of tert-butyl

1 M tert-Butanol 280°C 250 bar 11.5 kG

Avoided Muon Level Crossing Resonance

Magnetic Field

$$B_{\mathrm{res}} \approx \frac{1}{2} \frac{A_{\mu} - A_{\mathrm{X}}}{\gamma_{\mu} - \gamma_{\mathrm{X}}}$$

Paul Percival

tert-Butyl radical in water

Paul Percival

NUSC 341, November 2005

Hyperfine constants are used to map unpaired spin in radicals

Mu¹³C₆₀ Avoided Level Crossing Resonance

Percival, Addison-Jones, Brodovitch, Ji, et al., Chem. Phys. Lett., 245 (1995) 90

Paul Percival

NUSC 341, November 2005

H atoms and free radicals in liquids

H is the simplest atom

 \Rightarrow fundamental chemistry

H is a constituent of water, hydrocarbons, carbohydrates \Rightarrow essential chemistry

Chemically speaking, $Mu \equiv H$

We study Mu as a substitute for H

because it is similar: tracer, spin label

because it is different : isotope effects

Muonium Chemistry – areas of application

Muonium (caged)	Mu as probe of local environment Fixed cage: fullerenes, silsesquioxanes partial: ice transient: water
Kinetics	How fast does it go? in gases: reaction dynamics liquids: solvent effects; diffusion vs. activation control
Structure (needs e-spin)	Where does it end up? Free radicals: unpaired spin distribution
Mechanism	How does it get there? Identification of radical products Transfer of muon polarization
Dynamics intramolecular intermolecular	Nature is floppy! Temperature dependence of hyperfine constants LCR lineshape analysis

31

Further Reading

http://www.sfu.ca/chemistry/news/pt_quilt/index.htm

http://musr.org/cmms.php

http://musr.org/intro/musr/muSRBrochure.pdf