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Abstract
Network analysis begins with data that describes the set of relationships among the members of

a system. The goal of analysis is to obtain from the low-level relational data a higher-level description
of the structure of the system which identifies various kinds of patterns in the set of relationships.
These patterns will be based on the way individuals are related to other individuals in the network.
Some approaches to network analysis look for clusters of individuals who are tightly connected to
one another; some look for sets of individuals who have similar patterns of relations to the rest of the
network. Other methods don’t “look for” anything in particular — instead, they construct a
continuous multidimensional representation of the network in which the coordinates of the individuals
can be further analyzed to obtain a variety of kinds of information about them and their relation to
the rest of the network.

One approach to this is to choose a set of axes in the multidimensional space occupied by the
network and rotate them so that the first axis points in the direction of the greatest variability in the
data; the second axis, orthogonal to the first, points in the direction of greatest remaining variability,
and so on. This set of axes is a coordinate system that can be used to describe the relative positions
of the set of points in the data. Most of the variability in the locations of points will be accounted for
by the first few dimensions of this coordinate system. The coordinates of the points along each axis
will be an eigenvector, and the length of the projection will be an eigenvalue. The set of all
eigenvalues is the spectrum of the network.

Spectral methods (eigendecomposition) have been a part of graph theory for over a century.
Network researchers have used spectral methods either implicitly or explicitly since the late 1960's,
when computers became generally accessible in most universities. The eigenvalues of a network are
intimately connected to important topological features such as maximum distance across the network
(diameter), presence of cohesive clusters, long paths and bottlenecks, and how random the network
is. The associated eigenvectors can be used as a natural coordinate system for graph visualization;
they also provide methods for discovering clusters and other local features. When combined with
other, easily obtained network statistics (e.g., node degree), they can be used to describe a variety
of network properties, such as degree of robustness (i.e., tolerance to removal of selected nodes or
links), and other structural properties, and the relationship of these properties to node or link
attributes in large, complex, multivariate networks.

We introduce three types of spectral analysis for graphs and describe some of their mathematical
properties. We discuss the strengths and weaknesses of each type and show how they can be used
to understand network structure. These discussions are accompanied by interactive graphical displays
of small (n=50) and moderately large (n=5000) networks. Throughout, we give special attention to
sparse matrix methods which allow rapid, efficient storage and analysis of large networks. We briefly
describe algorithms and analytic strategies that allow spectral analysis and identification of clusters
in very large networks (n>1,000,000).
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1 We have introduced some notation which will be followed throughout:
• matrices are represented by bold capitals: D
• (column-)vectors are represented by bold lower case: e 
• inner products of vectors are represented as  eTe = n (a scalar) where eT is the transpose of e.
• outer products of vectors are represented as eeT = M (a matrix)
• eigenvalues are represented by greek letters, usually with some relationship to the latin letters representing a

matrix and an eigenvector. E.g.,( αi , ai ) is an eigenpair of adjacency matrix A.

Introduction
A standard method in statistics for handling multivariate data is to find the directions of maximum

variability, usually of variance-covariance or correlation matrices. These directions are called Principal
Coordinates or eigenvectors, while the relative importance of each direction is represented by
numbers called eigenvalues. (Jolliffe, 1986) Finding this coordinate system may be accomplished by
a series of rotations (although this is not the most efficient method) that end up pointing along the
direction of maximum variability, with the second largest maximum variability at right angles, and so
on. As a result, the data matrix is reduced to a diagonal matrix, with diagonal entries corresponding
to the importance (eigenvalue) of each direction (eigenvector). The collection of all eigenvalues is
called the spectrum. One goal is to reduce the problem so that only the most important dimensions
(those with the largest eigenvalues) contain most of the variability. Implicit in these methods
(variance-covariance or correlation) is that some kind of “expected” or “background” signal has been
subtracted: in the case of variances, these would be the means of each variable in the original data
matrix. To find these eigenvectors and eigenvalues we need to solve the eigenvalue equation:

E e = ε e
(we will derive this equation below) which states that along the direction represented by vector e,
multiplication by data matrix E does not change the direction, but only the length (where ε may be
any  number, including 0).1 The related pair (ε,e) is called an eigenpair of matrix E.

A network or graph G(V,E) is a set of nodes V (points, vertices) connected by a set of links E
(lines, edges). We will consider networks that are binary (edges have logical value 1 if an edge exists,
0 if not), symmetric (an edge from node i to j implies an edge from node j to i), connected (there is
a set of edges connecting any two nodes, consequently only one component), and without self-loops
(no edges between i and i). We may represent such a network as the adjacency matrix A = A(G)
with: 

1  in row i, column j if i is connected to j, 

0  otherwise.

We will not directly discuss weighted networks, where the entries for an edge may be a number other
than 1, although most of the results that follow generalize to such networks. For many “real world”
networks, A consists mostly of 0's: it is sparse. We will discuss efficient ways of storing and
manipulating A using sparse methods.

Associated with A is the degree distribution D, a diagonal matrix with row-sums of A along the
diagonal, and 0's elsewhere. D describes how many connections each node has. We call the number
of nodes, m, the order of G and it is equal to the number of rows or columns of A. We represent the
number of edges by |E|. We will also introduce two other matrices related to A:

•  the Laplacian:    L = D - A
•  the Normal:   N = D-1 A

and will discuss the properties of the spectrum and associated eigenvectors of A, L, and N.
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Distances and diameter:
One important property of a network is the set of distances between any pair of nodes i and j; that

is, the least number of links between any pairs i and j. One way of calculating this is to take powers
of the matrix A as follows:

1st power A = A by definition gives a matrix of all pairs of nodes linked to each other.

2nd power = AA has a non-zero in row i column j if j is two steps away from i. Since i is 2
steps away from itself, the diagonal i,i entry counts the number of these 2-steps.

3rd power = AAA has a non-zero entry in row i column j if j is 3 steps away from i.

Eventually, some power of A, say AN, will consist of entirely non-zero entries, meaning every node
has been reached from every other node. We call N the diameter of the graph: the longest possible
path between any pair of nodes.

This is a very inefficient way of calculating the diameter of a graph for two reasons:

1) calculating each power of A requires m3 calculations

2) as more nodes are reached, the powers of A become less sparse until eventually no 0's
remain: the amount of storage required approaches m2 .

If we continue taking powers of A, an interesting thing happens: all the columns become multiples
of each other. Taking higher powers of A corresponds to taking longer “walks” along the edges and
we can interpret this as a “loss of memory” about where we started from (Lovasz, 1995). We will see
why this happens soon, as well as other examples of this phenomenon.

We can approach this problem another way by the properties of the spectral decomposiiton of
A (Parlett, 1980). Let αi be the eigenvalues of A and a i the corresponding eigenvectors, with 
α0 ≥α1  ≥α2 ...  ≥αm-1 and  ||ai || = 1 (the eigenvectors are  normalized to length 1). Then the spectral
decomposition of A is:

(1) A =  Gi ("i)ai ai
T  where ai ai

T is an  m×m  matrix defining a 1-dimension subspace and 
(ai ai

T)N = ai ai
T  if  i=j;  ai aj

T = 0  if   i≠j

therefore AN = Gi ("i)
Nai ai

T for any power N, and this allows an easy way of calculating powers of
A, assuming we have already calculated all the eigenpairs (αi , a i ).

Another important property of the spectral decomposition is the approximation property. If we
take the first k of the eigenpairs (αi , ai ), then Ak = "i ai ai

T
  is the best least-squares approx-

i

k

=∑ 0

imation to A, meaning that we have captured most of the variability of A in the important eigenpairs.
For example, we can estimate an upper bound for the diameter using the second-largest eigenvalue
α1  (Chung, 1989):  

      Diam(G) # j ln(m-1)/ln(k/"1) k
Unfortunately, this bound applies only to k-regular networks (all degrees = k = "0). We will get
better bounds for general networks using different spectra. Nevertheless, this bound does show one
relationship between the spectrum and an important property like diameter. In particular, when k/"1

is large (there is a large gap between  the first two eigenvalues), the upper bound on diameter is
small, so all distances are short.
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The Power Method and Sparse methods:
Using (1) and eigenpair (α0 , a 0 ) we can see why taking taking large enough powers of A results

in columns that are multiples of one another – in fact, multiples of eigenvector a 0. This is the basis
of the Power method (Hotelling, 1933) for finding eigenpairs. We have mentioned that taking powers
of matrix A is not efficient, so we introduce a representation and methods that are far more efficient.

A very simple way of storing and manipulating a sparse matrix A is to use a link list representa-
tion, which stores only the non-zero entries of A as a list of pairs i,j for each link in A. We could then
calculate the diameter of A by starting at i=1 and following each link until we have reached every
node, repeat for i=2, and save the maximum number of steps. This requires about m|E| operations
(Aho, et  al., 1987) and a very moderate amount storage equal to 2|E|. We can now use (1) to devise
a very efficient version of the Power Method for finding the largest eigenpair:

Starting with some random vector p normalized to length 1:

            Repeat p' 7 Ap , q 7 p , p 7 p'   until p is no longer changing in direction.

Then the largest eigenpair of A is (p/q, p). There are some bookkeeping details: Ap uses the link
list representation, and the entries of  p' must be adjusted in size after each multiplication (for details
see Richards & Seary, 2000), but the method will always work for any matrix without repeated
eigenvalues, which is generally the case for social networks.

If we want more eigenpairs, we can iterate with 

   p' 7 Mp -α0 a0  a0
T

to get the second, and with

p' 7 Mp -α0 a0 a0
T -α1 a1 a1

T

to get the third, and so on, without destroying sparsity. However, we must store the (αi , a i) eigen-
pairs somewhere;  the procedure is subject to loss of precision on a computer; and the iterations may
converge slowly if αi /αi-1 is close to 1. There are better methods, such as Lanczos iteration (Parlett
et al.,1982) which converge very rapidly and do not have problems with loss of precision.

Some network invariants:
Some properties of A remain unchanged (invariant) under the series of orthogonal rotations that

diagonalize A (eigendecomposition). We will relate these to some network invariants of A.
The eigenvalues of any symmetric matrix M are the roots of the characteristic polynomial:

xm + c1 x
m-1 + c2 x

m-2 +c3 xm-3 ... + c m-1
 

Therefore, c1 = α0 + α1 + ... + αm-1 (sum over all eigenvalues) of A;

c2 = α0 α1 +α0 α2 ... + α0 αm-1 ... +αm-3 αm-1 + αm-2 αm-1 (sum over all pairs);

c3 = α0 α1 α2 + α0 α1 α3 + ... + αm-3 αm-2 αm-1 (sum over all triples)

The trace of a matrix is the sum of the entries on the diagonal, and this is invariant under
orthogonal rotations. Since A has trace of 0 (no self-loops), c1 = 0. The sum of product pairs is equal
to minus the number of edges so that c2 = -|E|. Most important is c3 which is twice the number of
triangles in G. Higher coefficients are related to cycles of length 4, 5,... although they also contain
contributions for shorter cycles (Biggs, 1993). It appears that the eigenvalues of A encode
information about the cycles of a network as well as its diameter. We will see related results for the
other two spectra.
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2 Similar results may be obtained from the moments of the eigenvalue distribution (Farkas. et al., 2001; Gho, et al.,
2001)

A bipartite network is one that can be partitioned so that the nodes in one part have connections
only to nodes in the other part, and vice-versa. Such a network cannot have odd cycles (of any
length) and hence no triangles. This means all the odd coefficients c2k-1  must be 0. It can also be
shown (Biggs, 1993) that, in bipartite networks, the eigenvalues occur in pairs with opposite signs,
so that α0 = −αm-1 and so on. Bipartite networks can be used to represent two-mode networks
(Wasserman & Faust, 1994), for example the network relating people and the events they attend.

These results scratch the surface of the information contained in the spectrum of A for k-regular
graphs. For general graphs, we need to turn to other spectra.2

The Laplacian spectrum:
The Laplacian of a network was originally discovered by Kirchoff (1847). There are a number of

definitions and derivations, perhaps the most revealing due to Hall (1970), who was interested in
situating the nodes of any network so that total edge lengths are minimized.

He considers the problem of finding the minimum of the weighted sum

 (2)    z = 1/2Gi,j(xi - xj)
2 aij

where a i j are the elements of the adjacency matrix A. The sum is over all pairs of squared distances
between nodes which are connected, and so the solution should result in nodes with large numbers
of inter-connections being clustered together.
Equation (2) can be re-written as:

= 1/2Σ i,j (xi
2-2xi xj + xj 

2) aij  = 1/2Σ i xi 
2 aij  -1/2Σ i,j 2xi xj

 aij + 1/2Σ j xj 
2 aij    

= Σ i xi
2 aij + Σ i Σ i,j xi xj 

 aij  = XTLX      

where L = D - A is the Laplacian. In addition to this, Hall supplies the condition that XTX = 1, i.e.,
the distances are normalized. Using Lagrange multipliers (a standard method for solving problems
with constraints), we have:

         z = XTLX - λXTX 

and to minimize this expression, we take derivatives with respect to X to give:

 (3)    LX -λX = 0 or LX = λX          

which is the eigenvalue equation. It is not hard to show that  λ0 =0 with l 0 = 1, the constant (or
trivial) eigenvector, and that 0=λ0 ≤ λ1≤... λm-1. For L, the most “important” eigenvectors belong to
the smallest eigenvalues (Pothen, et al., 1990).

It turns out that the discrete network Laplacian shares many important properties with the well-
known continuous Laplacian operator L2 of mathematical physics. This has led to an explosion of
research and results, mostly concerned with λ1 (Bein, 1991).

The definition of L shows that there is no loss of sparsity (except for the diagonal) and that the
sparse methods mentioned earlier can be applied to find all or some of the eigenpairs. The
requirement that we must find the smallest eigenpairs is easily overcome by subtracting a suitably
large constant from the diagonal of -L (which subtracts that constant from the eigenvalues without
changing the eigenvectors).This guarantees that the first eigenpairs returned by the Power Method
or Lanczos iteration are associated with the smallest eigenvalues of L.
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Some of the coefficients of the characteristic polynomial of L have an easy interpretation:

c1 = Trace(L) = 2|E| (i.e., twice the number of edges)

cm-1 = 0 (since 0 is an eigenvalue)

| m cm-1 | = λ0 λ1...λm-1 + λ0 λ2 ...λm-1 + ... + λ1 λ2 ...λm-1 = λ1 λ2...λm-1 = the number of spanning
trees of G  (this is the Matrix-tree theorem of Kirchoff, 1847).

In general, the eigenvalues of L encode information about the tree-structure of G (Cvetkovic, et
al., 1995). The spectrum of L contains a 0 for every connected component. There is no such direct
way to find the number of components of a network from the spectrum of A. There is also a bound
on diameter related to λm-1 and λ1 for general graphs from Chung, et al., (1994):

Diam(G) # j cosh-1(m-1)/ cosh-1 ((λm-1 + λ1)/(λm-1 - λ1))k
Intuitively, if λ1 is close to 0, the graph is almost disconnected, while if λ1 >> λ0 (an eigenvalue gap)
the diameter is small. 

The Normal spectrum:
We can repeat the same argument as Hall to derive the Normal spectrum, with the normalization

constraint that XTDX = 1 (Seary & Richards, 1995) to give:

LX = µ DX,  or assuming that D can be inverted,

D-1 LX =  D-1 (D - A)X = (I - D-1 A)X = µ X

where I is an identity matrix of proper size. In fact, we usually take the defining equation to be

(4)  D-1 AX = NX = ν X   with   D-1 A = N   and   ν = 1−µ

since adding an identity matrix shifts the eigenvalues by 1 without changing the eigenvectors. Note
that for connected networks D not only has an inverse, it also has an inverse square root D-1/2.

The Normal matrix N has a number of interesting properties:

1) It is a generalized Laplacian (with a different definition of orthonormality)

2) It therefore has a trivial eigenvector n0 with eigenvalue ν0 = 1

3) The spectrum of N is bounded by 1 = ν0  ≥ν1 ... ≥νm-1  ≥ -1

4) The rows of N sum to 1 (it is a stochastic matrix)

5) The spectrum of N contains a 1 for every connected component

6) The eigenvalue -1 only occurs if G is bipartite, in which case all eigenvalues occur in pairs.

7) N has been rediscovered a number of times: generalized or combinatorial Laplacian (Dodziuk &
Kendall, 1985; Chung,1995); Q-spectrum (Cvetkovic, et al.,1995).

The descriptive name Normal is suggested by points 2) - 5), although it is not standard terminology.
 It is easy to see that there is no loss of sparsity in the definition of N.  Each 1 in row i is simply

replaced by  1/Dii  and the 0's are unchanged,  but N is no longer symmetric.  However, the matrix
D-1/2A D-1/2 is similar to N (has the same eigenvalues) and we can apply the sparse methods described
above to solve for the eigenpairs (νi, ei) and then calculate  D-1/2 ei = ni  to get the corresponding
eigenvectors without losing precision or sparsity.

For N, the coefficients of the characteristic equation are harder to interpret except in special
cases, but the eigenvalues encode information about both the cycle and tree structure of G
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3 no external constraints need to be satisfied

(Cvetkovic, et al., 1995). Some examples:

c1 = Trace(N) = 0

c3 = c2k-1 = 0 (no triangles or other odd cycles) if G is bipartite

∏i deg(i)/Σi deg(i) Σi=1(1-νi) = number of spanning trees of G

In the last example we see how details of the degree distribution are also encoded in the spectrum.
Fan Chung uses this to derive two remarkable bounds (see Chung, 1995 for details):

         

where vol X is the total number of edges in a subset of nodes X⊂V and  is V-X. Chung’s firstX
bound applies to any graph (regular or not) and is much tighter than the previous bound (for the
Laplacian). Intuitively, if ν1 is close to 1, the network has a long path or is almost disconnected, and
if ν1 << 1, the diameter is small.

Chung’s second bound describes the distance between subsets for any number k of subsets, based
on the kth eigenvalue. The result suggests that we can use the eigenvalues to estimate how many
subsets we should look for in a network without forcing distances that are too short (and hence too
many subsets).

Interpreting the Spectra:
Many important properties of the spectrum of A(G) where G is k-regular are true for L(G) and

N(G), even when G is not regular. Another way of looking at this is that these properties of A are true
because the spectrum of A is simply related to those of L and N for regular graphs: ("i = k-8i = νi /k
for k-regular graphs, with the corresponding eigenvectors being identical).  In other words, both L
and N are more natural function of graphs. This point of view is shared by the authors of recent
papers on the Laplacian (Grone, et al., 1990, 1994). Mohar (1991) presents a collection of  important
results relating to the spectrum and eigenvectors of L. Chung (1995) has written several papers and
a book about N. 

We return to the goal expressed in the opening paragraph. We would like to find the most
important global features of a network, after accounting for what could be considered “expected” for
a random network with the same number of nodes and edges. The biggest problem with interpreting
the spectrum of A is the lack of an “expected” eigenvector (again, except for k-regular graphs). There
is a lot of literature on the so-called “main eigenvectors” of A: those which have a projection on the
“all-ones” vector (e.g., Harary & Schwenk, 1979) , but the results remain hard to interpret (Cvetkovic
and Rowlinson,1990). Both L and N have an “expected” all-ones eigenvector for which the
interpretation is clear (though different in each case).

To interpret L, we turn to physical analogy and the relation to L2 as discussed by Friedman
(1993). He considers a graph G as a discrete manifold (surface) subject to “free” boundary
conditions.3 For illustration, consider L2 as the spatial part of the wave equation (Fisher, 1966,
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4 This interpretation of the eigenvectors may be even more useful when considering L2 as the spatial part of the
Diffusion equation (for example, when considering diffusion of innovation or disease).
5A problem can arise with bipartite graphs: p0 does not exist since the chain oscillates between the two sets of
vertices (period = 2). Probabilists deal with this by a simple trick: divide N by 2 and add a self-loop of probability
1/2 to every vertex:  N' = I/2 + N/2   The eigenvalues of N' are then:  1 = ν'0  #ν'1# ... # ν'm-1  #  0  so that 
ν' = (1+ ν)/2 and again the eigenvectors are not affected.  In effect, this suppresses all negative eigenvalues.
However, negative eigenvalues are useful for directed and bipartite networks.
6 As we saw, AK shows a similar phenomenon, but there is no simple relation to D, due to “leakage” from all the
“main eigenvectors” (Cvetkovic, et al., 1988)

Chavel, 1984). Think of a fishing net subject to no forces. It just lies there at 0 energy with nothing
happening. As we subject it to regular oscillations, the net vibrates with the most highly-connected
regions moving together. Friedman shows how the Hilbert Nodal theorem (Courant & Hilbert, 1965)
can be applied to a discrete network, which generalizes Fiedler’s result (described below): the kth

eigenvector divides the network into no more than k+1 disconnected components.4

To interpret N, we have a number of choices:

1) N is the Laplacian for a network of nodes, each weighted by its degree

2) N is the transition matrix of a Markov Chain for a simple random walk on the nodes

3) N2 is similar to the χ2 matrix, thus treating A as a contingency table

The first leads to a physical analogy similar to that for L, so we consider 2) and 3):

The Normal spectrum and Random walks:
Specifically, we consider nearest-neighbour random walks on a network (Lawler & Sokal, 1988).

Define the probability-transition matrix for such a walk as        

         N = D-1 A

Then the probability of moving from vertex i to any vertex adjacent to i is uniform. N is a row-
stochastic matrix, and the random walk is a Markov chain. In this case 1 (the trivial all-ones
eigenvector) is related  to the stationary state of the Markov Chain:  the probability is 1 = ν0 that such
a probability distribution is eventually reached.5 The vector p0 = 1T  N = N T 1 is the stationary state,
and it is proportional to the degree distribution. The second eigenpair (ν1, n1 ) has become important
in the analysis of rapidly mixing Markov chains – those that reach the stationary state quickly
(Sinclair, 1995). From the previous discussion it should not be surprising that these are associated
with  ν1 << 1 (a large eigenvalue gap), which means that the walk quickly “forgets” where it started.6

Moreover, when ν1 is close to 1, there must be parts of the network that are hard to reach in a
random walk, implying long paths or a nearly disconnected network. 

Normal spectrum and χ2:
The χ2 matrix is defined in terms of the row and column marginals (sums). A typical element is

(Observed ij - Expected ij)
2 «Expected ij  which is not sparse. For a sparse network A, consider χ which

has a typical element (Observed ij - Expected ij) «√ Expected ij where 

Expected i j =    
deg (i) deg (j)___________

     G deg(i)
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7 While PCA results tell how much of the variance each dimension accounts for, the Normal eigenvalues tell how
much of the network’s chi-squared each eigenvector (dimension) accounts for.

We can write P  as:   so that non-zero elements of A become   Aij ¬/Eij  while the 0 terms
O

E
E−

are unaffected, maintaining sparsity. The second term corresponds to the trivial eigenvector which
can be dealt with separately. In matrix notation  χ = D-1/2A D-1/2  which has eigenpairs (νi, D

1/2ni) Thus
we have 

(5)  χ2 = Σj=1 νi
2 / Σi aij (omitting the ν0 =1 expected term for ni = 1)

This equation shows how much each dimension contributes to χ2  which is a measure of dependence
between rows and columns. In this interpretation, if ν1 is small (<1 << <0 = 1), then χ2 is also small:
there is no relation between rows and columns of A, and so there is no “signal” above the expected
“background”. If ν1 is close to 1, then χ2 will be large and there is a relation between rows and
columns of A, with the first eigenvector pointing in the direction of the maximum variability in χ2.
If ν2, ν3 ,...νk  are also large, we need  k+1  eigenvectors to describe the patterns in the χ2 matrix.
With (5) we can tell how many eigenvectors we need to explain most of the χ2 of the network.7

Compositions
The Kronecker product of two binary matrices A1 and A2 makes a copy of A1 for each 1 in A2.

It is well-know that for two matrices A1 and A2 of order m1 and m2 the eigenpairs of the Kronecker
product A1qA2 behave well (West, 1996): 

If A1 has eigenpairs ("i , ai ) and A2 has eigenpairs ($j ,bj ), then 

A1qA2 has eigenpairs ({"i × $j} ,{ ai q bj })

It is also well-known that A1 and A2 behave well under Cartesian sum:

A1rA2 = A1qI2 + A2qI1 (where I1 and I1 are identity matrices of appropriate size)
has eigenpairs ({"i + $j} ,{ ai q bj }).

The Laplacian L also behaves well under Cartesian sum. For L1rL2 the eigenpairs are
({8i + 6j} ,{ li q kj })

This fact is used by Pothen, et al., (1990) to study the Laplacian of grids, which are Cartesian
sums of paths. Further, the eigenvalues of L1 and L2 always contain a 80 = 0 with corresponding
constant eigenvector, so that the corresponding eigenpairs of L1rL2 are (8i+0, li  q1). The term li q1
means that the components of li are replicated m2 times. Since the Cartesian sum of two paths is a
grid, this produces a perfectly rectangular representation (Fig. 1b). The Laplacian is therefore a useful
tool in problems involving regular grids (or hypergrids). However, N does not behave well under
Cartesian sum (Fig. 1c).

The Laplacian does not behave well under Kronecker product. However, the Normal spectrum
does (Chow, 1997), so that N1qN2 has eigenpairs

 ({<i × :j} ,{ ni q mj })

Further, the eigenvalues of N1 and N2 always contain a <0 = 1 with corresponding constant
eigenvector, so that the corresponding eigenpairs of N1qN2 are (<i × 1, ni q1). The term ni q1 means
that the components of ni are replicated m2 times. Because all the coordinates are the same within
each copy, this produces clustering of the components of  N1qN2 for these eigenvectors.
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8 Hagen also uses deviations from median

It appears that the behaviour under Kronecker product explains why both the Adjacency and
Normal eigenvectors are good at detecting both on- and off-diagonal blocks (clusters of edges).

Visualization
The Laplacian can L provide good visual representations of graphs which are Cartesian products

(such as grids and hypercubes); while N can provide good visual representations of graphs which are
Kronecker products (such as graphs consisting of blocks). The reasons for this are suggested above
and have mostly to do with the behaviour of eigenpairs which are sums and products with 0 and 1,
respectively. For graphs that are not k-regular, eigenpairs of A do not provide such good
representations since, in general, there is no constant (expected, trivial) eigenvector to combine with.

Another way of describing these results is to consider the relationship between the eigenvector
components for a node and those it is connected to (Seary & Richards, 1999). It is evident from the
definition of eigendecomposition that (where  “u~v”  means  “u is connected to v”)

(6)      ai (u) = Eu~v ai (v)/"i    for eigenpair i of A

(7)      li (u) = Eu~vli (v)/(8i-deg(u)) for eigenpair i of L

(8)      ni (u) = Eu~vni (v)/(<i×deg(u)) for eigenpair i of N

Note that A has no control for node degree.  Consider the effect for "important" eigenpairs:
(*"*• k o 1, 8• 0 and *v* • 1) when deg(u) is small, a(u) will be folded toward the origin, while l(u)
and n(u) will sit further away from the origin than its neighbours. This effect makes it difficult to
interpret visual representations based on A, except for k-regular graphs where all three spectra are
essentially the same (Fig. 1)

The equation for ni shows that for <i near 1, each node is approximately at the centroid of those
it is connected to. The exact difference from the centroid for node u of eigenvector ni is:

ni (u)- Eu~vni (v)/deg(u)) = (1-<i)ni

For important eigenvalues <i  near 1, this produces very good visualization properties. In addition,
the eigenvector representation may be combined with derived properties such as betweenness
(Freeman, 1979)  to produce very helpful displays of large networks (Brandes et al., 2001)

Interpreting the eigenvectors
1. Partitions

Powers (1988) and others have shown how eigenvectors of A can be used to find  partitions of
highly connected subsets (clusters) of nodes, but these methods are not as general or as clear as those
derived from L or N.

The first non-trivial eigenvector l1  of L is the subject of extensive literature (Lubotzky, 1994;
Alon & Millman,1985). Fiedler (1975) first suggested that the eigenvector l1 associated with the
second-smallest eigenvalue λ1 could be used to solve the min-cut problem: separate the network into
two approximately equal sets of nodes with the fewest number of connections between them, based
on the signs of the components of  l1.

8 In fact, more recent derivations of L use the min-cut property
as a starting point (Walshaw, et al., 1995) and the results are used to partition compute-intensive
problems into sub-processes with minimal inter-process communication (Pothen, et al., 1990). This
technique is called Recursive Spectral Bisection (Simon, 1991). Other researchers have used l2 , l3
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9 see Dhillon (2001) for a formal derivation and proof

and higher eigenvectors to produce multi-way partitions of networks (Hendrickson & Leland, 1995).

The graph bisection problem (Mohar & Poljak.,1991) is to find two nearly equal-sized subsets

V1,V2 ⊂ V such that cut(V1,V2) = Σij aij   is minimized, where i∈V1, j ∈V2.  (i.e. nodes in V1 and V2

have few connections to each other).
This problem is known to be NP-hard  (Garey & Johnson, 1979), but a good approximation is

given by the signs of l1  (Walshaw & Berzins,1995). This gives two sets of nodes of roughly the same
size, but has no control for the number of edges in each part, and so any clustering of nodes is a side-
effect of the partition.

However, we can add an additional constraint that the number of edges in each part also be
roughly equal by weighting the node sets by their total degrees. This is exactly what a partition based
on n1 from N gives us, since it n1 points in the direction of maximum variability in χ2 (Greenacre,
1984).9 Similarly, further partitions based on n2, n3, ...will also produce sets of nodes with a large
number of edges in common (as long as <2, <3, ...make significant contributions to χ2).  Partitions
based on positive eigenvalues will produce blocks on the diagonal of A of edges associated with each
set of nodes, while those based on negative eigenvalues produce nearly bipartite off-diagonal blocks
(which occur in pairs if the network is symmetric) (Seary & Richards,1995).

2. Clustering
Ideally, the important eigenvectors should be at least bimodal to induce clustering based on sign-

partitions, and often they are multi-modal (Hagen ,1992), suggesting that standard clustering methods
can be used on the coordinates of these vectors.  Equations (7) and (8) show that L and N place
nodes approximately at the centroids of their neighbours. For N, the distances are actually measured
in χ2 space, meaning that nodes with very similar patterns of connections will be close together
(Benzecri, 1992). This clustering happens with either positive or negative eigenvalues (on- or off-
diagonal). The latter are important in nearly bipartite networks with few triangles (Fig. 3).

3. Problems
Farkas, et al., (2001) and Goh, et al., (2001) report that the important eigenvectors of A are very

localized on nodes of high degree, and suggest that this effect may be used to distinguish certain
types of networks. This effect does not occur for L or N (fig. 2), since each include some control for
degree, and so far no similar results for distinguishing network types have been reported for these
spectra.  The biggest problem for L and N is their sensitivity to “long paths”, especially to pendant
trees attached to the main body of the network (Seary & Richards, 2000). For N, these may be
interpreted as nodes that are hard to reach (distant) in a random walk. For long paths internal to a
network, this effect is actually an advantage, since these cycles are detected as “locally bipartite” and
emphasized in important eigenvectors. Nodes on such paths can have a large effect on global
properties such as diameter (Fig. 3-4).

Two-mode networks
Two-mode networks mix two different kinds of nodes and connections. A simple example is an

affiliation network such as people and the events they attend. We could be interested in finding sets of
people with events in common (or, equivalently, sets of events attended by the same people): this is an
example of co-clustering. Affiliation networks can be represented by bipartite graphs for which A and N
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are most suited, since they have symmetric spectra for these (the eigenvalues occur in pairs with opposite
sign). Because of this we don’t need the entire bipartite matrix: we can work with the rectangular
representation, and infer the missing parts of the eigendecomposition. If we assume m1 people and m2

events, the resulting eigenvectors consist of m1 components for people followed by m2  components for
events. The resulting blocks will be strictly off-diagonal and once again the eigenvectors of N provide a
superior solution by maximizing χ2. In fact, this solution is identical to that provided by Correspondence
Analysis, a statistical technique for finding patterns in 2-mode data (Benzecri, 1992).

Partial Iteration
For large networks, it is not necessary or desirable to calculate the entire eigendecomposition.

For very large networks, it may not be possible in terms of time and space to calculate even a few
eigenpairs. Nevertheless, it is possible to get at a large amount of the global and local network
structure by partially iterating using the Power Method. A few iterations of N = D-1 A , with each
iteration placing nodes at the means of their neighbours, will produce a mixture of the most important
eigenvectors. Consider the spectral representation

N K = Gi(<i)
KniDni

T 

We know that (niDni
T) K =niDni

T for all K, so the contributions of eigenvectors with small <i quickly
drop out as these (<i)

K approach 0. This means that N K is dominated by the dimensions with <i near
1. We start with a random vector, and quickly (6-10 iterations) produce such a mixture. Moody
(2001) describes a procedure in which this process is repeated a number of times, each producing a
slightly different mixture of the important eigenvectors (Fig 5). The results are then passed to a
standard cluster analysis routine (such as k-means, Ward’s method) to find any clusters of nodes.
 
Further analysis

The method of partial iteration of N has been used for years in the program NEGOPY (Richards
and Rice, 1981; Richards, 1995), as the first step in a more complex analysis. A key concept in
NEGOPY is that of liaisons. These are nodes which do not have most of their connections with
members of a cohesive cluster of nodes, but rather act as connections between clusters (Fig 3-4).
Often it is the liaisons that provide the connections that hold the whole network together. Finding the
liaisons requires detailed knowledge about the members of (potential) clusters and their connections,
and is not an immediate result of a partition based on eigenvectors or clustering methods. Neverthe-
less, eigendecomposition methods – full or partial – are an excellent strategy to begin such analysis.

Future prospects
More work needs to be done on the categorization of networks based on important eigenpairs of

L and N. Recent reports (Koren, et al., 2002; Walshaw, 2000) suggest we might not need to resort
to partial methods after all; we can find important eigenpairs exactly for enormous networks (m>105)
using “small” amounts of time and memory by first reducing the network in some way by sampling,
solving the reduced eigenproblem, then interpolating back up with a very good “first guess” for the
Power Method. Preliminary tests show that this should work equally well for Lanczos iteration.
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Cartesian sum Kronecker product
                    

  a) Using the eigenvectors of A. With no “trivial” vector to combine with, the displays are distorted.

         

b) Eigenvectors of L behave well under
Cartesian sum. Coordinates of a 1-D
path are replicated as straight lines.

Eigenvectors of L do not behave well under Kronec-
ker product.

     

c) Using eigenvectors of N. Lines are slightly
curved, so the cube is slightly distorted.

Largest negative eigenvector of N captures
bipartiteness perfectly.

Figure 1. Six views of a 6 x 8 x 10 grid. Left: as the Cartesian sum of three paths producing a three-
dimensional grid. Right: as the Kronecker product producing a bipartite graph.
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a) The first 3 eigenvectors of N produce clusters of
nodes. These are labelled with the resulting
partition into 4 blocks, along with the liaisons. The
central liaison is of high degree and holds the
network together. The figure is slightly rotated to
show the clusters.

b) Adjacency matrix permuted by partition numbers. The
blocks have no interconnections, and the network is held
together by the liaisons (right and bottom).

Figure 2. Two views of a small social network with 145 nodes. (Data Source: L. Koehly)

     

a) The first 3 eigenvectors of N. The 3rd eigenvalue
is negative, since there are very few triangles in the
rightmost cluster. The labelling is by ethnic group,
which shows a close relation to structure. There are
only two connections between the two main ethnic
groups.

b) Adjacency matrix permuted by partition numbers. In this
case the liasons are of low degree.

Figure 3. Two views of a small social network of drug users with 114 nodes. (Data Source: Scott Clair)
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a. This figure shows the close relation between the
first 3 eigenvectors of N and four needle exchange
sites, which are used to label the nodes. The figure is
rotated to make this clear.

b. This figure is like an Adjacency matrix, except
links are located by the coordinates of the first
eigenvector of N. The network is dominated by
exchanges within sites E and W.

Figure 4. Two views of a needle exchange network. (Data Source: T. Valente and R. Foreman). This
network is moderately large (N=2736) and roughly scale-free (k≈1.7). The eigenvectors of A are dominated
by nodes of high degree (>100). 

     

a) Close-up of clusters formed by the first 3
eigenvectors of N, labelled by construction.

b) Clusters formed by placing each node at the centroid of its
neighbours, iterating 8 times with 3 random starts (multiple
partial iteration). Labelled by construction.

Figure 5. A moderately large (N=20,000) artificial network (Data Source: J. Moody) constructed for
testing purposes. The network was constructed from tightly connected groups of 50 nodes, each group then
loosely connected in sets of 8, with 400 of these even more loosely connected into a single component.
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APPENDIX (Glossary, examples, facts and definitions)

adjacency matrix: A network (graph) may be represented by a matrix of  zeros and ones, with a one
indicating that two nodes are connected (adjacent), and a zero otherwise. In a weighted graph, the ones may
be replaced by other positive numbers (e.g.,  a distance or cost).
A sample adjacency matrix is shown below. See link list
                      a b c d e f g h      
            a  0 1 1 1 0 0 0 0      a has connections to b,c,d
            b  1 0 1 1 0 0 0 0       b has connections to a,c,d
            c  1 1 0 1 0 0 0 0       ...etc...
            d  1 1 1 0 0 0 0 0
            e  0 0 0 0 0 0 1 1
            f  0 0 0 0 0 0 1 1
            g  0 0 0 0 1 1 0 0 
            h  0 0 0 0 1 1 0 0 

Adjacency spectrum: The adjacency matrix of a graph, like any matrix, may be subject to an eigen
decomposition. In graph theory, the resulting set of eigenvalues is referred to as the graph spectrum, in
analogy to the  continuous spectrum from continuous spectral analysis methods such as Fourier analysis. In
Fourier analysis, the spectrum is understood to refer to the weighting of  sines and cosines, whereas the
discrete graph spectrum (eigenvalues) are weights of eigenvectors with unknown functional form. We
sometimes use the term eigenpair refer to both eigenvalues and eigenvectors. Since there are other spectra
associated with graphs, we refer to this one as the Adjacency or Standard spectrum.

block: A block may be contrasted with a clique in the sense that the former are defined as sets of nodes that
have similar patterns of links to nodes in other sets, while the latter is a set of nodes that have most of their
links to other nodes in their set. All cliques are blocs, but some blocks are not cliques.  One of the aims of
blockmodelling is to identify roles by clustering the nodes so that those with similar patterns of connections
are next to one another in the matrix. The members of each block perform similar roles in  the network.

block model: a higher-level description of a network, where roles (or blocks) are represented by a
simplified graph. For the matrix above, a block model would be: 1 0 0

0 0 1
0 1 0

Cartesian sum: A form of graph composition, which forms more complex graphs from simpler ones.
Cartesian sum may be expressed in terms of Kronecker product as: 

A1rA2 = A1qI2 + A2qI1  (where I1 and I1 are identity matrices of appropriate size) 
As an example, the Cartesian sum of two paths is a rectangular grid.

clique: In graph theory, a clique is a sub-graph in which all nodes are  connected to each other. In social
networks, a clique is a set of nodes with most of their connections with other members of the clique. This
would generally correspond to an informal role (e.g, friendship). In the above matrix {a,b,c,d} form a
clique.

cluster: A collection of points that are “close” to each other in some sense. Many definitions (and related
techniques) are available. For networks, we should also insist that the points share connections, either
within the cluster (clique) or with another cluster (see block model).

component: If a graph is connected, it consists of a single component. A disconnected graph does not have
a path between any pair of nodes, and may consist of several components.

connected: If there is a path between every pair of nodes in a graph, the graph is said to be connected. A
disconnected graph does not have a path between any pair of nodes, and so distances (and diameters)
cannot be defined, except within each component.
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distance: For graphs, the distance between nodes is defined as the smallest number of links connecting
them. Also called geodesic distance.

diameter: the largest geodesic distance between any pair of nodes in a graph

gap: The term gap or spectral gap refers to large distances in the spectrum of eigenvalues, particularly
between 0 and the second-smallest (Laplacian) or between 1 and the second-largest in absolute value
(Normal). A small gap means that a graph can be disconnected with few edge-cuts; a large gap means there
are many paths between sets of nodes.

global vs local methods: In graph theory, a local method is one that examines only a few neighbours of a
node. A global method is one which examines the entire graph, such as an eigendecomposition.

Kronecker product: A form of graph composition, which forms more complex graphs from simpler ones.
An example of the Kronecker product is:
  1 1 1 0 1 0 1 0
      q      = 0 1 0 1
  1 0 0 1 1 0 0 0
                  0 1 0 0
where every 1 in the first matrix has been replaced by a complete copy of the second matrix. In this
example the first matrix is a block model, not a graph.

Lanczos iteration: a generalization of the power method which allows calculation of a specified number of
eigenpairs without loss of precision or orthogonality. Currently one of the best methods for
eigendecomposition of large systems.

Laplacian spectrum: The eigenvalues (and eigenvectors) of a matrix formed by subtracting the adjacency
matrix from a diagonal matrix of node degrees. The eigenvalues are non-negative, with a "trivial" (constant)
eigenvector of eigenvalue 0.  This discrete analogue of the continuous Laplacian shares a great many of its
important properties. For this reason, it has become the focus of much research in the last decade.

liaisons: according to NEGOPY, these come in two types. Direct liaisons are individuals who have most of
their interaction with members of groups, but not with members of any one group. They provide direct
connections between the groups they are connected to. Indirect liaisons are individuals who do not have
most of their interaction with members of groups. They provide indirect or ’multi-step’ connections between
groups by connecting Direct Liaisons, who have direct connections with members of groups (Richards,
1995). 

link: A pair of nodes with some connection between them. In graph theory, links are also called edges or
lines. In social networks, links are often called ties.

link list: A sparse format for storing information in a network. Only the pairs of nodes that are connected
are in the link list. For symmetric graphs, only one pair is needed for each link. For weighted graphs, a third
column may be used to hold the weights. For the symmetric adjacency matrix shown above, the link list is:

1 2
1 3
1 4
2 3
...and so on...

localized: As applied to an eigenvector means that most of the coordinates are near zero, and only a few
have large values. Coordinates may be either positive or negative, and the eigenvectors are normalized to
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make the sum of squares of components 1, so the sum of 4th powers is generally used as a measure of
localization. If this sum is near 1 only a small number of coordinates are important. If it is near 1/m, then
all nodes contribute to the eigenvector.

neigbourhood: all the nodes which are connected to a given  node. May be extended to all nodes connected
to a set of nodes, but not including the original set.

NEGOPY: (NEGative entrOPY) (Richards and Rice, 1981, Richards, 1995) is a computer program
designed to find clique structures. It uses a random starting vector, and multiplies it by the row-normalised
adjacency matrix, subtracting off row means. Usually 6-8 such iterations are performed, resulting in a
vector which is a mixture of the the important Normal eigenvectors (Richards and Seary, 1997). This
vector is then scanned for potential clique structures, which are tested against the original network and for
some statistical properties (e.g., variance in the node degrees). Sparse matrix methods are used throughout,
allowing large networks to be analysed rapidly.

node: An object that may have some kind of connection (link) to another object. In some cases, nodes are
people, organizations, companies, countries, etc. In graph theory nodes are also called vertices and points.
In social networks, nodes are often called actors.

normal spectrum: The eigenvalues (and eigenvectors) of a row-normalised adjacency matrix. This matrix
is row-stochastic, and similar to a symmetric matrix, so its eigenvalues are real and less than or equal to 1
in absolute value. It is closely related to the Laplacian (indeed, it may be defined to be the Laplacian in the
χ2 metric defined by the node degrees).

partition: A partition of a graph is a division of the nodes into a collection of non-empty mutually exclusive
sets. A partition of the adjacency matrix shown above could be:  {a,b,c,d}, {e,f,g,h}, so that there are no
links between the nodes in each part of the partition.

sparse matrix techniques:  In analysis of networks with more than 50 or 60 members, it is usually the case
that each node is connected to only a fraction of the others. The adjacency matrix for such networks contain
mostly zeroes, which indicates the absence of links. In these situations, it far is easier to work with a list of
the links (link list) that are present, rather than the whole matrix which contains many times more numbers.
Any array (such as an adjacency matrix)  which consists mostly of some default number (usually zero) may
be treated as a sparse matrix. Since this value is known, it does not need to be stored as  part of the array.
This allows the array to be stored in a much more efficient manner, e.g., for an adjacency matrix, we only
need to store the links (pairs of nodes) when they exist. For a weighted adjacency matrix, we also need to
store the values of the weights, one for each link. Many matrix operations (e.g., multiplying a matrix by a
vector) can utilize this more efficient storage to run much faster as well.  Sparse matrix techniques are
those which avoid any manipulation of the matrix that would affect the sparseness property (e.g., taking the
inverse will generally do this, as will correlating each row or column with all the others). It is  quite
possible to find eigenvalues and eigenvectors using sparse techniques.

spectral analysis or methods: Loosely speaking, another term for eigendecomposition. Mathematically
speaking, a general term referring to any re-statement of some function in terms of a set of basis functions
(e.g. sines and cosines for Fourier analysis). The spectrum is the weights of these basis functions. The 
Fourier transform is especially useful in mathematical physics since the sines  and cosines (or ez for
complex z) are eigenfunctions of the ubiquitous derivative and integral operators. The terms function,
operator and  eigenfunction have the discrete analogues of vector, matrix and eigenvector. 

Standard spectrum: see Adjacency spectrum


