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Assessing infilling 1 methods . . for missing data 
in spawning salmon estimates 

Monitoring of populations is a key component of an effective conservation program. 

Trends in abundance must be monitored to ensure that timely action is taken before 

conservation risks become too severe. Unfortunately this monitoring is expensive and 

in many instances, only the abundance of a portion of widespread species can feasibly 

be estimated in a given year. For spawning estimates of British Columbia's Thompson 

River coho salmon, 41% of the data are missing between 1976 and 2001. Accurate 

abundance estimates for this aggregate are particularly important as the abundance 

of these salmon had declined so severely by the late 1990's that a major, continuing 

conservation effort was initiated. 

This project presents an examination of seven imputation methods for infilling 

missing data in such records. We assessed the performance of these methods through 

a simulation study that modeled widely accepted features of the population dynamics 

of coho from the Thompson River watershed, specifically including the recent decline. 

The study also incorporated the historical record of missing estimates. Performance 

was measured through jackknifed sums-of-squares estimates to evaluate bias, chance 

error and total error of the infilled values. We found that the infilling methods that 

use a multiplicative analysis-of-variance-style model outperfomed the others, with the 

preferred version within this class of methods application-dependent. 

We also investigated a sockeye salmon population where the missing data pattern 

was extreme (72% missing). In this extreme case, with little time overlap between 



data records for different subsets of spawning areas, no method for imputing missing 

values worked well. For methods based on modified analyses of variance, this difficulty 

can be related to the concept of balance in an experimental design. We conclude the 

project with an exploration of the advantages of sampling schemes that promote this 

sort of balance. In particular, we demonstrate the drop in bias and chance error by 

incorporating balance into the sampling design. 
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Chapter I 

Introduction 

A major component of a conservation program is the monitoring of population size. 

Trends in abundance need to be monitored if timely action is to be taken. Unfortu- 

nately, the monitoring is almost always expensive and complicated. This is partic- 

ularly so for populations such as Pacific salmon (Oncorhynchus spp.) that occupy 

numerous, more or less discrete habitat units. Attempts to census entire species are 

doomed to failure. At best, accurate estimates can be obtained for relatively few 

local populations in any given year. In the case of British Columbia's coho salmon 

(0. Icisutch), the existing record of spawner-abundance data is irregular. 

As a result, it is typically difficult to obtain clear, unambiguous evidence of abun- 

dance trends from the irregular records. Here we examine two such datasets: Thomp- 

son River coho and North Coast sockeye ( 0 .  nerka).  Both coho and sockeye salmon 

are protected in areas of Washington, Oregon and California by the US Endangered 

Species Act. In British Columbia, Thompson River coho salmon are recognised as 

both genetically unique and severely depressed by a decline in marine survival in the 

last decade (Bradford and Irvine 2000), such that in May 2002, this population was 

officially designated as endangered by COSEWIC (COSEWIC 2002). 

Clear evidence of abundance trends is key to the implementation of management 

actions. Without such evidence, declines may go undetected before a crisis ensues. 
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This project addresses potential improvements to the estimation procedures for as- 

sessing t'rends in spawner abundance. The questions addressed specifically are: 

1. How might overall abundance estimates be constructed from partial records of 

abundance with estimates for individual spawning populations for some creeks 

missing in some years? This question will be addressed by considering several 

methods for imputing the missing elements in the data record (Chapter 2). 

2. Which of these imputation methods would make this task more reliable, and for 

what sorts of patterns of missing data can a reliable estimate not be constructed 

(Chapter 3)? 

3. What sorts of sampling schemes for deliberately generating partial records would 

make this task easier (Chapter 4)? 



Chapter 2 

Missing Data Methods 

In this chapter, seven methods for imputing values for missing data in spawning 

salmon records are presented. These kinds of data containing information about an 

entire river system, is typical for coastal North America. Numbers of spawning salmon 

are estimated in each of the creek tributaries for several years. Typically spawning 

salmon numbers are not recorded for every year, but instead creeks are irregularly 

sampled, especially for minor but potentially important subpopulations. Likewise, 

intensity of sampling varies between years, depending on fluctuating budgets and 

changing government priorities. The following imputation methods will be discussed 

with records for a single creek running across a row (rows 1,.  . . , c), and records for 

a single year running down a column (columns 1,. . . , t ) ,  such that the data are in a 

c x t matrix. 

2.1 Seven Imputation Methods 

2.1.1 Zero-Infilled 

The zero-infilled method replaces all missing values with zeros. 
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2.1.2 Nearest-Value 

The nearest-value method imputes from the same'creek from the nearest year for 

which there is an entry (i.e., the closest entry in the same row). In the case of a tie, 

the entry for the closest preceding year is chosen (i.e., the closest left-hand value). 

This method calculates the slope and intercept of a line between the closest left and 

closest right values for a creek and then infills based on this equation. If there are no 

left-hand values then the equation is extrapolated based on the closest two right-hand 

values. Likewise, if there are no right-hand values then the equation is based on the 

closest two left-hand values. 

2.1.4 Averaging of scaled values 
/ 

The averaging of scaled values is a method that has been used by the Department 

of Fisheries and Oceans to infill missing values. The method begins by scaling all 

I 
I the observed values by dividing each by the maximum observation for the same creek 

across all years. The missing values in this rescaled record are then filled in by the 
, 

/' average of all the observed scaled values for that year. The missing values are then 

, converted back to the original scale by multiplying by the creek maxima. For example: 

a single missing value in the jth column (ith row) is replaced with: 
-- - 

where xf refers to the sum over all observed creeks for the jth year, and y,,maz = 
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2.1.5 Transformed Linear Model 

This method fits an analysis of -variance model to the observed data to estimate 

creek and year effects. One assumption of this analysis of variance model is that 

the responses are normally distributed and have constant variance independent of the 

mean. However, these data are count data and the variance is likely to be a function 

of the mean. One approach to this problem is to  perform a variance stabilizing 

transformation before fitting the model. The natural log transform (n,, transformed 

to In n,, + 0.5) suits this purpose, where the addition of 0.5 is to avoid problems with 

observed zero counts. The second assumption is that the systematic effects combine 

additively with no interactions. Only main effects (1, ..., c creeks and 1, ... , t years) 

are considered, and interactions between creek and year are assumed negligible as 

they are totally confounded with the error. The log transformation is often also a 

good choice as it can help to linearize the fit. Missing values are infilled by applying 

the fitted linear model and back transforming. 

The linear model may be represented by: 

where ,LA is the intercept or grand mean; ci is the ith creek effect: i '  = 1, ..., c and 
t EL1 ci = 0; t j  is the jth year effect: j = 1, ..., t  and E,=, t, = 0; and c ,  is the error 

term. 

However, such transformation-based methods are now considered by most statisti- 

cians to  have been superceded by generalized linear models. We therefore considered 

two such models, one based on the Poisson distribution, the other on the gamma 

distribution. 

2.1.6 Model Based on the Poisson Distribution 

This method assumes that the data are Poisson-distributed for which the variance is 

proportional to the mean. We used the following model: 
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where ci is the ith creek effect: i = 1, ..., c and to ensure identifiability the product of 

the ti's is restricted to 1; t j  is the jth year effect: j = 1, ..., t; and t i j  is the error term. 

This gives E(yij) = citj and Var(yij) = citj, with Y,j N Poisson(citj) and hence 

and the constraint, n: ci = 1. Then up to a constant the log-likelihood function is: 

where E and f indicate that the sum was taken over all observed creeks and all observed 

years. This log-likelihood can be maximized to produce maximum likelihood estimate 

for the parameters. To maximize this function (2.3) under the constraint that n," ci = 

1 or equivalently that x," ln(c,) = 0, we can form the Lagrangian equation: 

C 

L(c, t, 4 = l (c ,  tly,) + X C 1n(c2), 
Z 

and set the partial derivatives with respect to ci and t j  equal to zero. Thus 

dL 
and - at, = ( - c z )  0 

Lagrange multipliers indicate the rate at  which the maximum value increases as the 

constraint is relaxed. Here, because the maximum value is independent of the con- 

straint, X must be zero, and therefore the maximum likelihood estimates satisfy: 

and can be solved iteratively. 
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The parameters can also be estimated by the Iterated Reweighted Least Squares 

(IRLS) procedure. The following procedure is iterated minimized through IRLS: With - 
cio and tJo fixed from the last iteration, find values of ci and t j  that minimize: 

2 (~ij~~~z)~ 
subject to n c = 1 . 

i j i 

The solution converges to the maximum likelihood estimates. TVe fit the model using 

the IRLS method from SPLUS. These estimates can also be justified when there is 

extra-Poisson variation as long as the variance remains proportional to the mean 

As in the previous method, only main effects are considered and interactions be- 

tween creek and year are assumed to be negligible as they are inseparable from the 

error component. Missing values are infilled by applying the fitted Poisson model. 

2.1.7 Model Using Gamma Distributions 

The final imputation method explored here uses a family of gamma distributions 

in which the variance is proportional to the square of the mean; thus allowing a 

stronger dependence of the variance on the mean. We used the model as in (2.2) with 

E(y,,) = c,t, and Var(y,,) cc ( ~ , t , ) ~ .  Thus Y,, N garnrna(c,t,, v) with 

, 
Y i j  

and the constraint, n z c i  = 1. Interaction effects between creeks and years are not 

considered as they are confounded with the error. 

The log-likelihood is therefore a fixed constant plus: 
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As in the Poisson model, to maximize the likelihood function under the constraint_ 

nF ci=l, we form the Lagrangian equation: 

By taking the first derivative of the Lagrangian equation with respect to ci and t j ,  

and setting these derivatives equal to zero, one can find solutions for the maximum 

likelihood estimators. 

t 

As in the case of the Poisson model, the Lagrange multiplier equals zero, and the 

maximum likelihood equations simplify to: 

1 
t 

q = = C %  for all i. 
t t j  

Similarly 

dL 
- = 0 gives t j  = 
a t j  i 

These equations can be solved iteratively for ci and tj. In addition, the same 

estimates can be found through iteratively reweighted least squares. We chose to use 

the maximum likelihood equations to numerically find the solutions. 

The maximum likelihood algorithm starts by making reasonable guesses for the 

starting values of e l , .  . . , c,. Each unknown year parameter (tj) is considered sepa- 

rately and the estimation problem is reduced to an estimation of a mean: 

where 2. is the number of observed creeks for the jth year. To update the estimate of 

ci, the tj's from above are used to solve for each creek parameter (ci): 
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and the maximum likelihood equations are iterated until convergence. Once the pa- 

rameters are determined, the model is then used to.fill in the gaps in the abundance 

record. 



Chapter 3 

Comparison of imputation met hods 

This chapter discusses the strengths and weaknesses of the. seven imputation meth- 

ods described in the previous chapter. The chapter contains a simulation study that 

investigates performance in the context of the Thompson River coho population with 

40.7% of the observations missing between 1976 and 2001. We then examine perfor- 

mance when the missing value pattern is extreme (72.0% missing between 1950 and 

1997) by evaluating the sockeye salmon abundance record for an area on the British 

Columbia North Coast. 

3.1 Simulation Study 

3.1.1 Review of Coho Life Cycle Ecology 

Coho salmon in southern British Columbia have a 3-year life cycle in which they 

reproduce only once (Sandercock 1991). From November to January, adults migrate 

from the ocean to their natal streams, where spawning occurs. After spawning, the 

adult salmon die. Coho fry emerge the next spring and remain in fresh water usually 

for one year before migrating to the sea as smolts. This one-year residency in creeks 

is a potential bottleneck through limited carrying capacity specific to each creek. The 

majority of these fish remain in the ocean for 18 months before returning to fresh 
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water to  begin the three-year cycle again (Sandercock 1991). 

Between 1976 and 1990, many spawning coho populations in British Columbia 

were relatively healthy. In the past decade, however, there has been a considerable 

decline in numbers of spawning coho salmon in some areas, including the Thompson 

River where abundance has declined as much as 90% (Bradford and Irvine 2000). This 

decline is thought to be in large part due to poor marine survival. Specifically, these 

declines have been correlated with various ocean parameters including upwelling and 

nearshore temperatures, which cause declines in body size, fecundity and proportion 

of females (Bradford and Irvine 2000, Nickelson et al. 1994). We incorporated the 

three-year life cycle and the population trend for this aggregate into the design of 

the simulation study with spawning abundances based on the Thompson River coho 

records. 

3.1.2 Details of Simulation 

The goal of the simulation study was to evaluate the performance of the infilling 

methods by simulating data to appro&mate the Thompson River coho salmon records. 

We generated a data array of 100 matrices each with simulated data for 89 creeks over 

26 years. These data were based on a stock-recruitment curve estimated from Black 

Creek on Vancouver Island, the most reliably observed wiId coho salmon population 

in B.C. (Routledge and Irvine 1999). The stock-recruitment curve was generated 

through three parameters chosen to specify: 

T the ratio of expected number in year j to the number in year j - 3, 

k the carrying capacity in terms of number of spawners needed to fill the freshwater 

habitat with fry, estimated as the average number of fish in the creek during 

the first 10 years of records (from 1976 to 1985) when coho salmon populations 

were considered stable, 

rk  the maximum number of returning adults that can be produced, and 

T an extra variance parameter. 
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Specifically if y,, is the number in creek i in year j ,  then the stock-recruitment curve 

was modeled by 

Y -  2, r y .  z,,-3 for yi,j-3 5 k, 

= r k  for yi,j-3 > k, 

where Y , , ~ - ~  is the number of salmon spawning in the previous generation. Thus the 

parameter r is the ratio of population size from one parent generation to the next, 

given that the population size is below the carrying capacity of the stream and that 

resources are unlimited. This parameter was set at  1.9 which was based on data 

collected from Black Creek (Routledge and Irvine 1999). It was set at the same level 

for all 89 creeks in the simulation. 

The carrying capacity parameter ( r k )  is the maximum sustainable number of adult 

returns for each creek. If a creek's population was below the carrying capacity, it 

would approach rk  in the subsequent generations, increasing by the ratio r=1.9 per 

generation. If more coho salmon were in the spawning areas than k ,  then the number 

of salmon in the following generation could be no more than if k salmon had been on 

the spawning grounds. This number k is fixed for each creek and specifies the number 

of spawning salmon required to  fully stock the creek with juvenile salmon. 

For this simulation study we introduced chance fluctuations about the recruitment 

curve using the Poisson-inverse-Gaussian distribution. The PIG distribution is widely 

used as a parametric model for extra-Poisson variability. Unlike its major competitor, 

the negative binomial, it can have a long right-hand tail without a sharp spike at zero 

(Dean et al. 1989). It is also easier to manipulate analytically than the Poisson 

log-normal distribution, which can nonetheless also assume the above form. 

Consider the mixed Poisson model where: 

Y, the number of spawning salmon, has a conditional Poisson distribution with mean 

up. Here v is a random effect, and g(u) is a probability density function such as the 
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inverse-Gaussian density: 

The distribution of Y (3.1) then has a Poisson-inverse-Gaussian (PIG) distribution 

with mean and variance functions: p and p(1  + p r ) ,  respectively. For a PIG distri- 

bution, T is the variance of the random effect, v, and dictates the amount of extra 

Poisson variation. The value of r was determined for each creek from the variability of 

the first 10 years of data (02) and the number of spawning salmon three years before 

This extra-Poisson parameter is desirable here because of the considerable environ- 

mental variability inherent in the system. 

Because of the three-year generation time for coho salmon, values in the time series 

for each creek were simulated based on the observation three years before (y2, j-3)  and 

the extra variance parameter r .  The number of fish a t  time t j  was generated by 

multiplying the value three years before yi,j-3 by the parameter r. If the value three 

years before was greater than the carrying capacity, then k was used instead of Y,,~-,. 

An extra 20 years of data prior to the actual start of the record were generated. This 

was to  ensure that the population had reached an equilibrium around rk at the start 

of the comparative analysis. 

Impact of declining marine survival 

Bradford and Irvine (2000) suggest that productivity of the Thompson River coho are 

being negatively affected by changes in ocean conditions. Thus, a progressive loss in 

marine survival could account for the observed population decline in coho spawning 

numbers. 
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We reproduced the decline of spawning coho salmon in the Thompson River system 

over the past decade (Bradford and Irvine 2000) by.using a logistic decline equation. 

We used the Verhulst-Pearl equation to introduce the decline in the carrying capacity 

and the intrinsic growth rate of each creek (Renshaw 1991, p.50). These changes were 

introduced to approximate the decline in survival of Thompson coho salmon over the 

past decade and to evaluate the performance of the different imputation methods in 

detecting the trend and in imputing reasonable values for missing data. The decline 

followed a deterministic logistic curve with a rate of decline: 

dY (t) 
dt 

= -RY (1 - 2) 
where R gives the rate of decline of the spawning population Y(t),  r k  is maximum 

number of adult returns and 

r k  
Y(t0) = I + e-C zz r k  (for some large positive C) . 

The number of fish at  time t is given by integrating with respect to t:. 

For a declining curve, the intrinsic growth parameter was arbitrarily set at R = 0.5, 

and the onset of decline was set at to = 11.5, the constant was set at  C = 6 to give 

from (3.3) the following logistic equation for Y: 

r k  
Y (t) = 1 + e-6e0.5(t-11.5) 

During the decline phase, the extra-variance component r was held constant, as 

was the ratio r. This was to ensure that the PIG variability declined as the population 

declined and to ensure that the extra variation was a constant multiple of the expected 

population size. 

The simulation was thus set to compare the seven imputation methods. We used 

the same missing data pattern as existed in the Thompson River dataset for each of 

the 100 simulated data matrices. We then infilled the gaps with values from the seven 

different imputation methods. - 
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3.2 Evaluating Performance of Methods from the 

Simulation Study 

3.2.1 Methods 

Plotting Annual Totals 

We plotted the yearly totals averaged over all creeks and all 100 simulations for each of 

the seven imputation methods against the average yearly totals from the known model 

(Figures 3.1, 3.2). This was done to visually assess how the imputation methods were 

performing on average. In particular, we were interested to see if there were consistent 

biases associated with any of the methods. 

Jackknifing Dependent Samples 

We used a jackknifed sums-of-squares estimate of dependent samples as described 

below to evaluate three components of error from the infilling methods relative to the 

known model. In this simulation, we know the actual model from which the data 

were generated. Thus it is straightforward to compare performance of imputation 

methods. 

We used the following notation in the sums-of-squares equations: 

is the number of fish in the ith creek, jth year and kth simulation, and is an 

element in the 89 x 26 x 100 array generated from the known model. 

Therefore, pJk = & xfz, X J k  is the average number of fish across all 89 creeks 

for the jth year and the kth simulation and Y ~ .  = xi=, Y , k  tracks the average 

decline across all years in the known model. 

ZtJk is the number of fish in the ith creek, jth year and kth simulation with gaps filled 

by imputation, and is thus an element in the 89 x 26 x 100 imputed array. 

Likewise, Z J k  = & xfz, Zvk is the average number of fish across all 89 creeks for 

the jth year and the kth simulation and 2, = & x;=, ZJk  tracks the average 

decline across years in the imputed array. 
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We used the following equations in cBlculating three components to the error sums 

of squares (bias, chance error, and - total error) for each imputation method. 

where Yj. and 2.j. should be very close and SSbias small if there is little systematic 

bias. The denominator is a weighting factor to account for the greater variability in 

years with more abundant fish. 

where SSchanC, gauges how much chance variation there is about the means. 

where SStOtal is algebraically the sum of the above two equations, and is a gauge of 

the overall error. 

Because the imputed arrays for each of the seven imputation methods are based 

on the same simulated dataset, the arrays are not independent samples. Therefore we 

made pairwise comparisons and tested the null hypothesis that these limiting values 

are the same for any pair of imputation methods, i.e., that their differences is zero. 

The sums of squares are calculated from only 100 simulations, therefore we were 

concerned that the sum-of-squares estimates might be biased estimates for an indefi- 

nitely large number of simulations. Therefore we elected to obtain numerical approx- 

imations for the sums-of-squares estimates using a jackknife estimation procedure. 

This jackknife procedure is now described before relating back to the sums-of-squares 

procedure. 
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The jackknife procedure consists of taking repeated subsamples of the original 

sample of n independent observations by omitting a single observation at a time. 

Thus, each subsample consists of (n - 1) observations formed by deleting a different 

observation from the sample. The jackknife estimate and its standard error are then 

calculated from these truncated subsamples. For example, suppose 0 is the parameter 

of interest and o ( ~ )  , o ( ~ ) ,  .. . , Q(,) are estimates of 0 based on n subsamples, each of size 

(n  - 1) as calculated as below. The jackknife estimate of 0 is calculated as the mean 

of the subsample estimates of 0: 

The jackknife estimate of the standard error of 8(.) is 

In our jackknife procedure, we tested the hypothesis that the expected difference in 

sums of squares was equal to zero: Ho = E(0) = 0, where 0 = SSmethodA - SSmethod B ,  

and A and B are from methods 1 through 7 as described in Chapter 2. The parameter 

of interest is then 0 and the asymptotic expansion of the raw estimate's expectation 

and of raw estimate based on a sample of (n-1) values is: 

Assuming that terms higher than first order are negligible, this gives two equations: 

n ~ ( & )  = n Q + a ,  

and ( n -  I)E(Q,-,~) = (n - 1)O-l-a . 

These can be subtracted to obtain 8(h) an unbiased estimate of 0 with the bias 

term of eliminated: 
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We calculated this for the n = 100 jackknifed estimates of 8, o ( ~ )  for k = 1, . . . ,100. 

The O(x) are functions of U-statistics and by jackknifing a U-statistic, we get an 

asymptotically normally distributed-random variable with a mean as in (3.4) and 

standard error as in (3.5) (Arveson 1969). 

The differences in sums of squares between methods A (SSn) and B (SSB) in 

bias, chance error and total error following (3.6), are estimated by: 

- 1 100 

s(.) = 100 [loo ( S S A ;  non-jack. - SSB; non-jack.) - ~ ~ ( S S A ;  jack.Lkl - SSB; jack.lkl 

k=l  

were SSjack and SSnon-,ack are the jackknifed and non- jackknifed sums-of-squares 

i estimates respectively. 

Also, the relationship between the jackknifed differences in sums of squares is: 

A A A 

0(.) bias + 0(.) chance .= g(.) total. 
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I3 4, A +  Z I  NV I/E AS TL PM G M ]  

' ( . ) , t a s  o 
Z I  (st .error) ( 0 )  

*(.)chance 0 
(st .error) ( 0 )  

A 

*(.)bzas 1.45 0 
N V  (st .error) (0.02) (0 )  

A 

' ( . )chance  -0.04 0 
(st .error) (0.02) (0 )  

A 

1.47 0.02 0 

I/E (&.error) (0.02) (0.006) (0 )  
' ( . )chance  -0.290 -0.25 O 

(st .error) (0.13) (0.13) (0 )  
A 

*(.)bzas 1.46 0.005 -0.02 0 
A S  (st .error) (0.02) (0.07) (0.007) ( 0 )  

A 

' ( . )chance  0.02 0.02 0.27 0 
(st .error) (0.05) (0.05) (0.10) ( 0 )  

A 

' ( . )b taS 1.42 -0.03 -0.06 0.04 0 
T L  (st .error) (0.02) (0.005) (0.007) (0.004) ( 0 )  

* 

' ( . )chance  -0.06 8.10 0.35 -0.08 0 
(st .error) (0.02) (0.02) (0.13) (0.04) ( 0 )  

A 

*(.)bzas 1.48 0.02 0.00 0.02 0.06 0 
PM (st .error) (0.02) (0.004) (0.007) (0.005) (0.003) ( 0 )  

A 

*(.)chance -0.24 -0.20 0.05 -0.22 -0.30 0 
(st .error) (0.03) (0.02) (0.01) (0.04) (0.02) ( 0 )  

* ( . ) h a s  1.47 0.02 -0.009 0.01 0.05 -0.01 0 
G M  (si.error) (0.02) (0.005) (0.007) (0.005) (0.003) (0.001) ( 0 )  

@(.)chance 0.03 0.07 0.32 0.05 -0.04 0.26 0 
(s t -error)  (0.02) (0.02) (0.13) (0.04) (0.005) (0.02) ( 0 )  

Table 3.1: Jackknifed estimates of differences in error sums of squares between meth- 
ods A and B. Zero-infilled (ZI), Nearest-value (NV), Interp./Extrap. (I/E), Average 
of scaled values (AS), Transformed linear model (TL) , Poisson model (PM), Gamma 
model (Gbl). Bold-face text represents significant differences at  the 5% level with 
Bonferroni adjusted p-values. Positive values indicate method A has greater error 
sum of squares, negative values indicate method B has greater. 
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Figure 3.1: Annual averages of numbers of spawning coho salmon in the Thomp- 
son River system of British Columbia; Zero-infilled, Nearest-value, Interpola- 
tion/extrapolation, Averaging scaled values. Standard error bars were calculated 
as the square root of the variance divided by the number of datapoints for that year. 
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Figure 3.2: Annual averages of numbers of spawning coho salmon in the Thompson 
River system of British Columbia; ANOVA-based methods. Standard error bars were 
calculated as the square root of the variance divided by the number of datapoints for 
that  year. 
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Figure 3.3: Plot of differences between the infilled values and the known values for 
the seven imputation methods 
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Figure 3.4: Jackknifed Bias and Chance Error Sums of Squares with Standard Error 
bars calculated from the Overall Error Sums of Squares. Zero-infilled (ZI), Nearest- 
value (NV), Interp./Extrap. (I/E), Average of scaled values (AS), Transformed linear 
model (TL), Poisson model (PM), Gamma model (GM) 

Sums of squares for bias 
Sums of squares for chance error 



C H A P T E R  3. COMPARISON OF IMPUTATION METHODS 

3.2.2 Results 

Of the seven methods, and for the pattern of missing values observed in the Thompson 

coho spawning records, three methods are not as effective interpolators as the remain- 

ing four. We found the zero-infilled, nearest value, and interpolation/extrapolation 

methods unsuitable, whereas the averaging of scaled values, tranformed linear, Pois- 
\ 

son, gamma models seem to perform better. (Table 3.1) gives the jackknifed sums- 

of-squares estimates of bias and chance error for each pair of the seven imputation 

methods. Insight from this error analysis and comparative data exploration aided in 

selecting the better methods. Interpretation of results is presented below. 

The zero-infilled method is clearly inadequate. The assumption that when data are 

missing there were no fish,,is clearly untrue and introduces an obvious and unac- 

ceptable bias. The jackknifed sums-of-squares analysis (Figure 3.4) and the graph of 

annual totals (Figure 3.1 and Figure 3.3) show clearly the degree of bias introduced 

by this method. 

Nearest value 

Although the performance of the nearest-value method as indicated by the jackknifed . 

sums-of-squares analysis is not unreasonable, we have concerns about bias in this 

method, particularly in the decline phase (Figure 3.1). A major concern is that this 

method does not allow for trends to  be observed within individual creeks when a gap is 

to be filled. Only jumps between horizontal steps are possible. This may be the cause 

of the bias evident in the decline phase of Figure 3.1. Furthermore, because infilled 

values rely only on one other data point, an unrepresentative observation combined 

with large data gaps will cause this method to work poorly. Therefore there are better 

tools for monitoring trends in populations. 
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Although the interpolation/extrapolation method has a small bias component to the 

total error, the standard error of the method is very large. Thus the method is un- 

reliable. Furthermore, when the imputation involves extrapolation, impossibly large, 

or worse, negative infilled values are possible. As a result, we regard this method as 

unsuitable. L . -- 

Averaging of Scaled Values 

This method performs adequately in this sums-of-squares analysis. However, there are 

some concerns about this method as it consistently underestimates the population in 

the decline phase and introduces a non-trivial source of bias (Figure 3.1). In particular, 

infilled values are sensitive to the maximum observed value in that they can never be 

greater than this observed maximum. 

Gamma Model 

Although this method tends to have smaller bias and chance error sums of squares than 

the Averaging of Scaled Values method, it is not statistically significant at  a = .05 

from this method in any of the three sums of squares components (Table 3.1). How- 

ever, according to the graphs of annual averages (Figure 3.2 and Figure 3.3), imputed 

values are consistently higher than the known data during the stable population pe- 

riod, and consistently lower during the decline phase. There are two problems with 

fitting these data to the gamma distribution. The first is that this kind of datum 

is discrete and the family of gamma distributions are continuous. A second concern 

with this model is that it entails assuming that the variance is proportional to the 

square of the mean. When the mean is small, the model used in the simulations 

will contain a non-negligible linear term as well. For datasets containing substantial 

numbers of small entries, especially zeros, as is the case here, this appears to  detract 

from the method's performance. Nonetheless, for reasons we do not yet comprehend, 

this disadvantage seems to disappear for more controlled patterns of missing entries, 
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as demonstrated in Chapter 4. 

Transformed Linear Model 

The responses after the transformation were assumed to be normally distributed, have 

constant variance independent of the mean, and have systematic effects that combine 

additively. A single transformation is asked to produce three things simultaneously. 

It should not be surprising then that this method is less effective than the Poisson 

method described below. The sums-of-squares analysis showed that a large component 

of the error in this infilling method is attributed to bias (Figure 3.4). The graph of 

annual totals shows that the bias is substantial in the decline phase indicating that 

this method is particularly poor a t  following downward trends. 

Poisson Model 

-4 big advantage over the traditional transformation approach in the Poisson GLM 

a approach is the freedom to specify the variance to mean relation and the error distri- 

bution. Therefore, when GLM's are used to  fit the data, a single transformation is not 

trying to do several jobs. The sums-of-squares analysis shows that a small component 

of the error is attributable to bias. Nonetheless, this method gives a larger chance 

error component than the transformed linear model method. We would preferentially 

select a method with a larger amount of chance error over one with a large bias com- 

ponent particularly. The graphs of annual totals (Figure 3.2) suggests this method 

works the best on average. 

3.3 Evaluating methods when the missing data pat- 

tern is extreme: North Co'ast sockeye 

These sockeye salmon (0, nerka) spawning records were collected between 1950 and 

1997 for 68 creeks in Fisheries and Oceans' statistical district the North Coast 

of British Columbia. Sampling intensity could be described at best as sporadic with 
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72.0% of the records missing. The scarcity of records is particularly high in the latter 

half of the series. This large number of missing values and the lack of balance in this 

pattern caused problems with many imputation methods. In addition, the lack of 

area-wide consistency in trends across creeks and years causes instabilities with the 

more sophisticated methods. These instabilities are examined here. 

Figure 3.5:  Annual Totals of spawning salmon for 68 creeks on the North Coast of 
British Columbia 
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We plotted the total numbers of sockeye salmon for the North Coast area as 

estimated by the seven imputation methods (Figure 3 . 5 ) .  From this plot, it is obvious 
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Figure 3.6: Annual numbers of spawning sockeye salmon for Canoona Creeks on the 
North Coast of British Columbia 
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that three of the methods do not perform well. 
I? 

Zero-Infilled, Interpolation/Extrapolation, Averaging of Scaled Values Meth- 

ods 

The zero-infilled method substantially underestimates the number of fish spawning, 

particularly in the later years where the number of observations was lowest. 

The weakness of the interpolation/extrapolation method is clearly seen in (Figure 

3.5). At either end of the data record where the method extrapolates rather than 

interpolates, absurdly large and negative annual totals are obtained. 

The right-hand section of (Figure 3.5) shows that the Averaging Scaled Values 

method predicts substantially higher totals than any other method. As most of the 

data are more complete for the first half of the record, and most of the data have a 

roughly decreasing trend, the creeks that contain data in the latter years have a big 

influence on the infilled values. This method fails here because some of the creeks that 

have more complete data records for the later dates, also have an increasing trend. 

This causes the average scaled column value to be unduly large, which results in the 

missing values being inflated without much apparent justification. This is clearly seen 

in the latter half of the series in (Figure 3.5). 

Transformed Linear, Poisson and Gamma Models 

The lack of consistent trends across all the creeks creates problems for those meth- 

ods that model creek and year effects but ignore the interaction effects (transformed 

linear, Poisson and gamma models). Inconsistent trends across creeks correspond to  

interactions between years and creeks, and because these interactions cannot be mod- 

eled, the imputations are untrustworthy. To demonstrate, we plotted the imputed 

values of these three methods for Canoona Creek (Figure 3.6). Canoona Creek is a 

creek unlike most of the other creeks in this area as the sockeye population does not 

decrease over the time period and missing values are mostly in the first half of the 

time series. In particular, the gamma model method does a poor job. 
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The transformed linear model method acts as if the residuals are lognormal. Hence, 

a large, positive residual will not be unexpected as. the lognormal distribution has a 
- 

long, right-hand tail. The GLM of the Poisson and gamma models minimize weighted 

sums of squares on an untransformed scale, and hence a large, positive residual will 

be less consistent with the model. These two methods will react to  a large positive 

residual by increasing the estimated "year" effect, and hence produce the larger peak. 

The variance in the gamma model is proportional to the square of the mean, and 

therefore the compensation is less in this model, and the peaks are higher in Cannoona 

Creek. 

Nearest Value 

The nearest value method considers only the information from the closest value for 

that creek. l? cannot include information from other creeks for a given year to help 

with the imputation. In this circumstance however, when there are conflicting trends 

occuring within the same area, the nearest value method performs moderately well. 

3.3.1 Chapter Summary 

If the pattern of missing values is very extreme and if the time trends are inconsistent 

across different spawning creeks, then even the best methods fail. This emphasizes 

the importance of a good long-term sampling design, an issue to which we now turn. 



Chapter 4 

Survey Design 

Accurate monitoring of salmon populations is a critical step in ensuring the persistence 

of a sustainable population of a species. This chapter emphasizes the need for a good 

sampling design for monitoring of populations. In particular, we focus on a pattern 

of missing values, called a balanced pattern, for which the ANOVA-based methods 

will work well. We stress the benefits of balanced designs, in which their optimal 

properties make them an important component in surveys with missing values. We 

also take a brief look at further refinements that might be appropriate in light of the 

three-year life history, followed by some summary conclusions. 

A Simulation Study Showing the Importance of Balance in Design 

Balance in this context refers to designs in which the pattern of missingness is "bal- 

anced" across years. Because there is value in sampling larger creeks more frequently 

than smaller creeks, balance can be modified within creeks such that sampling larger 

creeks occurs more frequently. This can be approximately achieved through taking 

weighted independent samples of creeks in each year. 

We designed a simple scenario to demonstrate the importance of balance in survey 

design. Using the same 100 data matrices as were generated for the Thompson River 

coho simulation in Chapter 3, we removed the same proportion of observations from 

the record but redistributed the missing pattern such that the pattern was balanced 
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throughout the creeks and years. We removed 38 of the 89 observations for each of 

the 26 years and for all of the 100 simulated data matrices. Furthermore, we assigned 

weights to  the sampling scheme. Three weight categories were introduced based on 

creek size: small, medium and large to which the weights 1, 2, and 3 were assigned 

respectively. The proportion of creeks within each category was roughly equivalent. 

We then used a random number generator to take a weighted random sample without 

replacement f r ~ m  the 89 creeks. 

To contrast with the balanced sampling scenario, we devised another sampling 

scheme with the same proportion of missing values per year (38189) but with an 

unbalanced pattern. We divided each of the three abundance-based categories of 

creeks into two, roughly equal subsets (Table 4.1). We also divided the range of years 

for which the data are used into two roughly equal halves. Within each abundance- 

based category of creeks, we selected one half of the creeks to have a high portion of 

the values missing from the first half of the year range, and no missing values from the 

second half of the year range. Then for the other half of the creeks in the abundance 

category, we reversed the pattern such that there were no missing values in the first 

half of the year range and a high portion of missing values in the second half of the 

year range. The weighting scheme was observed as well as possible. 

The changes in jackknifed sums of squares for bias and chance error were substan- 

tial for infilled values from the Poisson and gamma models. It is evident that balance 

affects the degree of chance error more in the Poisson model (almost 3x) than for the 

gamma model (less than 2x; Table 4.2). and bias is affected more in the gamma model 

than the Poisson model (Figure 4.1). If the design is balanced, then the amount of 

bias in the gamma model becomes negligible and it is a better model to use. This is 

because the precision of the infilled methods is better as the chance error component 

is almost a third that of the Poisson model. However, if the design is unbalanced then 

the GLM method has a smaller bias, and is a relatively better model to select. 

The sampling pattern for the Thompson River coho dataset had an added di- 

mension of imbalance in the above simulation. In some years, creeks were sampled 

intensively and in others not, so that there might be 89 creeks sampled in one year 
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lst 13 years 2nd 13 years 
weight 1 no missing values 94% missing - L - , - 

94% missing no missing values 
weight 2 no missing values 85% missing 

85% missing no missing values - - 
weight 3 no missing values 71% missing 

71% missing no missing values 

Table 4.1: Missing pattern used in the simulation of an unbalanced sampling design 

- A 

@bzas @chance 

(st.  error) (st. error) 
Poisson Model  0.00136 0.237 

Balanced (0.013) (0.022) 
G a m m a  Model  0.0009 0.134 

(0.0011) (0.018) 
Poisson Model  -0.0009 0.623 

Unbalanced (0.0020) (0.048) 
G a m m a  Model  0.0838 0.218 

(0.013) (0.023) 

Table 4.2: Comparison of jackknifed sums-of-squares errors from a balanced and 
unbalanced sampling design 
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Figure 4.1: Comparing bias in the infilled values from a GLM using the gamma 
distribution when the design is balanced and unbalanced. 
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and 10 the next. Our simulations did not consider this added dimension of imbalance, 

but it is reasonable to anticipate that this would have produced even more substantial 

errors in the infilled estimates. This simple demonstration highlights the serious need 

for better design criteria. 

The measure of efficiency is a scale free measure that is used to compare different 

sampling designs. Efficiency is calculated as the average of the estimated variances 

for all pairs of treatments or in our case years (John 1971, p. 10). In the simula- 

tions discussed here, t-he balanced and unbalanced designs have the same efficiency. 

Improvements in the efficiency of sampling design could be made if a balanced in- 

complete block (BIBD) design could be selected. If E is the efficiency factor of an 

incomplete block design (IBD) as measured by 

where: 

A is the number of times each pair of creeks appear in the same year and must be an 

integer, 

t is the number of years, 

n is the number of creeks measured in a given year 

s m is the number of years measured for a given creek; m < t 

then for all incomplete block designs E is less than one. But in the class of designs 

of block size m, and t years (treatments), the most efficient design is the balanced 

incomplete block design if one exists (Kempthorne 1951). The efficiency of a BIBD 

(John 1971, p.265) is: 

where efficiency only depends on t and m. For a given t, efficiency is an increasing 

fuction of m and therefore the number of measurements per creek (m) should be as 

large as is reasonable (John 1971, p.265). Values of E may be useful in deciding on 

the best model. 
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Connectivity 

Related to the notion of balance -is the concept of connectivity. The analysis of the 

North Coast sockeye dataset (Section 3.3) Kas an example of how lack of connectivity 

combined with inconsistent trends can cause the best methods to fail. For example, 

if creeks A & B are censused in year 1, and creeks B & C are censused in year 2, then 

creeks A & C are connected. The relationship A connected to  C is an equivalence 

relation which forms disjoint equivalence classes for the treatments. A design is said 

to  be connected if there is one equivalence class (i.e., if every pair of treatments is 

connected). Problems arise when creeks A & B are censused in year 1 and creeks 

C & D in year 2, then creeks A & C, A & D, B & C, and B & D are disjoint 

and the design is then disconnected. This means that creek effects are confounded 

with year effects, such that time trends will be indistinguishable from differences 

in productivity between sets of creeks. This implies that the analysis of variance 

methods will breakdown completely without connectivity, Therefore, the ultimate 

goal of survey design should be to maintain conectivity and balance. 

Rotating Panel Surveys 

Incorporation of the 3-year life cycle of the Thompson River coho into a rotation 

design could potentially further improve infilled estimates by reducing within creek 

variability. The variance can often be reduced by using the same sampl@g units 

(creeks) in the two successive salmon generations (Kish 1965, p.462). The variance 

tends to be least when the overlap is high for elements whose correlations are large 

(Kish 1965, p.470). 

For those Thompson River creeks, in which there were enough observed data to do 

a time series analysis, a lag-3 serial correlation for 9 of the 11 creeks was demonstrated 

(coefficients of autoregression: 0.46969, 0.44629, 0.44234, 0.37814, 0.31173, 0.20537, 

0.20271, 0.16816, 0.05177, -0.02945, -0.11979. If this correlation had been incorpo- 

rated into the survey design in the form of some kind of rotating panel design with 

many of the same creeks appearing in samples separated by three years, then further 

improvements might be achievable (Kish 1965, p.474). A rotating panel survey that 
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considers the correlation structure between succesive generations of salmon is worth 

investigating. 



Summary of Conclusions 

This thesis presents seven imputation methods for infilling missing data into spawning 

salmon records and examinks their performance in three patterns of missing data. For 

a reasonable amount of randomly missing data, we found the zero-infilled, nearest 

value, and interpolation/extrapolation methods to be inferior methods compared to  

the averaging of scaled values, transformed linear Poisson and gamma models to  

perform better. In particular, our simulation study shows the Poisson model which 

assumes the variance prop%rtional to the mean to be the most reliable in this context. 

When the missing data pattern is extreme and trends are not consistent across all 

creeks, problems arise for those methods that model creek and year effects but ignore 

interactions. In these cases, inconsistent trends across creeks correspond to interac- 

tions between years and creeks and because these interactions cannot be modeled, 

imputations are untrustworthy. In this context of imbalance and inc~nsistent trends, 

the nearest value method is the most reliable. 

Balance, connectivity and consideration of life history are key components in de- 

signing an area-wide survey. In the final chapter, we show that the degree of balance 

is critical in reducing bias and chance error and the reduction appears not to be 

uniform across all infilling methods. If balance is incorporated into the design, the 

gamma model outperforms the Poisson model. In light of this, further investigation 
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into modeling using the Poisson-inverse-Gaussian distribution, which is a mixed dis- 

tribution that is more flexible in its capacity to made1 the variance component, may - 
prove to be instructive. 
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Appendix 1: Raw Data 

1. Thompson River spawning coho records: 1976 - 2001 

2. North Coast spawning sockeye records: 1950 - 1997. 
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[a,] 15  NA 10 40 125 N4 35 225 50 36 NA 100 75 50 0 NA NA NA NA NA NA NA NA NA NA 0 
1 9 . ] N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A  O N 4  0 O N A N A  0 0 3 

[ 1 0 , 1 N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A  5 O N A N A  0 0 0 0 
1111 NA 40 2 30 30 10 20 20 20 100 500 60 100 200 150 25 25 150 12 NA 50 0 5 33 22 1 

[ 1 5 , 1 N A N A N A N A N A N A N A N A N A N A N A N A N A  1 N A N 4  O N 4  O N A N A N A N A  0 6 0 
116.1 NA 105 0 150 150 70 65 85 70 100 200 250 40 250 300 50 25 200 20 NA 75 0 NA 20 2 16 
[ 1 7 , 1 N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A N A  1 4  3 
I18.1 25 25 0 200 75 42 25 50 50 125 0 0 0 150 120 30 75 120 NA NA 60 2 20 117 23 20 
1191 NA NA NA 15 45 32 30 30 30 20 30 25 25 40 30 0 0 30 NA NA 25 1 2 20 9 2 

N A N A  0 
N A N A  0 
N A N A N A  
NA NA NA 

409 344 751 
10 10 20 
N A N 4  0 
20 100 25 
20 300 50 

0 O N A  
NA 2 25 
NA 0 10 

6 N A  0 
O N A  0 

NA 180 50 

2 0 6 4 4  
O N A N A 4 8  
0 612 208 152 

200 365 168 664 
N A 9 8 9 6  

2 9 0 1  
0 3 N A  2 
0 6 9 0  

N A N A N A  2 
35 93 156 364 

0 0 0  
NA 13 10 
NA NA NA 

1063 280 150 
0 50 10 

50 0 NA 
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0 0 0 
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150 1000 500 
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1 78 20 
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358 150 92 
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NA 99 4 2 

0 2614 1745 833 
0 35 109 5 
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N A 9 0 0  
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N A N A  7 6 

550 2299 2640 662 
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N A 1 5  O N A  
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N A N A 1 4 N A  
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NA 603 324 106 
30 90 205 85 

0 NA 100 
2000 2500 3000 
1722 231 273 

N A N A N A  
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N A N A N A  
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N A N A N A  
N A N A N A  
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N A N A N A  
N A N A N A  
70 45 55 
NA 105 100 
NA NA NA 
NA N4 NA 
NA NA NA 

6 64 48 62 
800 691 1812 2870 
407 131 1089 773 

0 0 165 0 
4 2 9 3 0  

NA 47 208 6 
3000 1271 1032 292 

M I 6 0  
N A N 4 2 5  8 

200 548 298 276 
NA NA 344 152 
N A N A 7 O N A  
NA 790 212 223 
NA 52 228 480 
NA 5460 4096 2719 

150 1055 80 60 
NA 114 7 NA 
NA 20 14 7 

9 N A N A  0 
N A N A  O N A  
N A O O 6 8  
NA 54 0 92 
N A N A  O N 4  
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