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Abstract

The spatial dimension of competition among retail outlets is well-researched and typically captured with spatial interaction models.  A stream of theoretical research has studied the consequences of incorporating various types of dynamics into these models.  We build on this research by incorporating a behavioral decision process based on bounded rationality, and by allowing for unexpected adversity in the environment in the form of exogenous shocks.  Given these characteristics--spatial competition, boundedly rational decision making, and environmental adversity--we study the long run dynamics of a model retail industry.  The model reaches a stochastic steady state which is "poised", in the sense that a shock may--or may not--trigger a wave of innovation which sweeps the entire system.  Detailed investigation of this steady state shows that it has the characteristics of a general type of organization, known as self-organized criticality, that has been described in both theoretical biology and statistical physics.  


SPATIAL COMPETITION WITH BOUNDED RATIONALITY: 


RETAILING AT THE EDGE OF CHAOS

1.  INTRODUCTION


Gravity and spatial interaction models have been successfully used for many years to describe and predict spatial demand, and to assist with retail location decisions(e.g., Huff, 1962; Drezner, 1994).  While these models have provided a number of significant insights, as Fischer and Nijkamp (1987) point out, "spatial systems are never static, but always in a state of flux, in both an absolute and relative sense."  Recognizing this, researchers have investigated the consequences of incorporating dynamics into spatial models.  Examples of dynamic models include (a) the stream of research based on the Harris and Wilson (1978) model (e.g., Fotheringham and Knudsen, 1986); (b) the thermodynamic disequilibrium approaches of the Prigogine school (e.g., Allen, 1982, 1983); and (c) cellular automata models (e.g., White and Engelen, 1993).  



The objective of these models is usually not prescriptive or managerial.  Rather, it is to gain a descriptive understanding of system structure in terms of underlying mechanisms.  The work reported here shares that objective.  A critical feature distinguishing our work from previous work is the explicit modelling of the managerial decision process that governs the microdynamics: in particular, we examine the consequences of a decision dynamic based on bounded rationality (Simon, 1955, 1965; Cyert and March, 1963).  In a recent review of dynamic spatial modelling, Nijkamp and Reggiani (1995) identify several research challenges, the first of which is "the formulation of dynamic economic systems models which are compatible with plausible behavioral hypotheses..."  In the context of the rapidly changing retail environment, the bounded rationality premise--too much information and complexity for managers to thoroughly process--is particularly appropriate.   Briefly, we assume only that the managers of the many competing retailers in the system are capable of innovative response to adversity, and that the response at least temporarily improves their store's situation.



Our model firms operate in an environment of adversity, which may be either competitive attacks (endogenous to the model), or external attacks--for example, demographic changes (locally or globally), labour problems, supplier conflicts, even burglary and fire.  Capturing this dynamic is the second departure from existing models. 


To summarize, our objective--in common with much of the previous dynamic spatial modelling--is to provide a theoretical description of the long term dynamic structure of a spatially competing industry.  Following on the research direction suggested by Nijkamp and Reggiani (1995), our unique objective is to study the long term structure that appears when bounded rationality governs decisions taken in response to unexpected attacks, from either competitors or the environment.  


We explore several model variations that capture the dynamics described above, and find that some, but not all, show an intuitively appealing stochastic form of organization.  Based on extensive numerical investigations, we conclude that the observed stochastic steady state has the characteristics of the robust and general type of organization, called self-organized criticality, that has recently been reported in both the theoretical biology and the statistical physics literature.  The state allows cascades of innovation of various sizes to sweep through the system--usually, only a few stores are involved, but occasionally, the entire system responds.  This has implications for how widely a retailer needs to scan the environment for disturbances.  


A striking feature is that the distribution of the number of stores making changes is extremely regular, and may be described as temporal fractals.  The model is therefore falsifiable, through failure to find the fractal structure.  


The steady state, self-organized criticality, or SOC, was first described in 1988 by Bak, Tang, and Weisenfeld.  Since that time, literally hundreds of papers, mainly in physics and biology, have been published on the subject, providing a rich source of inspiration for future research.  On this basis, we suggest potentially fruitful avenues for future prescriptive work.

2.  MODEL DEVELOPMENT


First we develop the static (i.e., within each period) model which relates market share to distance and a store desirability variable, allowing for a no-purchase option and a customer reservation distance.  We then describe the market structure, consisting of customers and stores distributed evenly on a Cartesian grid.  Finally, we discuss simulation dynamics, which are driven by exogenous increases in the no-purchase option.  Managerial reaction, in response to eroding revenues due to the exogenous shocks and competitive actions, is modelled by increases in the store desirability variable ("innovation") when revenues fall below a satisfactory threshold. 

2.1 Spatial Competition

We assume a Multiplicative Competitive Interaction model (PRIVATE 
e.g., Cooper and Nakanishi, 1988tc  \f O  \l 9 "e.g., Cooper and Nakanishi, 1988"; Hansen and Weinberg, 1979), where the jth store's share of the ith customer's purchases is given by
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where the summation is understood to include all stores within customer i's reservation distance, R, and  0 ( α,ß.  PRIVATE 
Ghosh and Craig (1991tc  \f O  \l 9 "Ghosh and Craig (1991") use a reservation distance in a location model for franchises. Similarly, in a product space context, PRIVATE 
Carpenter (1989tc  \f O  \l 9 "Carpenter (1989") introduces a "reservation distance" to limit the customer's consideration set.   Analogous to reservation price, this is a distance beyond which customers will not travel to patronize the firm.  In many situations, this has substantial appeal.  For example, it would not seem reasonable for a customer to allocate some portion of his dry cleaning, however small, to every dry cleaner in a city.  From the firm's point of view, the reservation distance determines the outlet's trading area.  


The term Kj represents a no-purchase option, which is typically used to ensure elastic total demand in equilibrium share modelling (see for example, Choi, DeSarbo, and Harker, 1990).  In the context of this research, its more important role is to capture store-specific environmental effects that impact share without any change in competitors' behavior.


For expositional intuition, the attractiveness parameter Sj will be referred to as "size", as suggested by Ghosh and McLafferty (1987), although it may be equally well thought of as any number of other quality measures (such as product valuation minus price).  Distance Dij will be taken as the usual Euclidean distance on geographic coordinates.   


In each period, each firm's revenues are the sum of attracted customer's shares of expenditures:
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2.2  Market Configuration
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1Figure 1: Market Configuration: Small circles represent customer origin points, squares are stores, and the trading area of one store is the area inside the large circle. 


Customers are uniformly distributed on a rectangular bounded plane, with customer-origin points in a regular grid (see Figure 1).  It is slightly more intuitive to think of the origin points as city blocks, rather than individual customers.  Stores are located in a coarser grid.  In each period, each customer-origin has one unit ( e.g., dollar) to spend of which a portion, depending on Kj, is allocated to all the stores within the customer-origin's reservation distance according to share of attraction.

2.3  Dynamics

Approach: The model evolves according to rule-based decision dynamics, rather than assuming a particular equilibrium concept.  White and Engelen (1993), in the context of urban land-use, provide a summary comparison of these two approaches to spatial dynamics:  They state that "most geographical theories...are static, and rational actors are assumed to interact in a market which remains in a state of stable equilibrium."  While recognizing the useful results derived from equilibrium approaches, they note the key shortcoming that, 


...at the aggregate level these models describe a static general equilibrium in which every individual is at a constrained optimum.  This is fundamentally not a reasonable characterization of a city, which common sense and experience tell is rarely if ever in an equilibrium state". 

White and Engelen contrast this with the substantial stream of research that takes the dynamic modelling approach:


In this approach, the focus is on the process, which may or may not lead to a stable equilibrium; but in any case, the models do not depend on an assumption of equilibrium [emphasis added].  The models typically yield results that are relatively complex, both spatially and temporally.


Examples of spatial process based models include Allen (1983), Allen et al (1984), Clarke and Wilson (1983), Dendrinos and Sonis (1990), Engelen (1988),  Fotheringham and Knudsen (1986), Nijkamp and Reggiani(1996), and Oppenhiem (1990).  The economics and marketing literature also has a history of modelling dynamics by process rather than equilibrium, to deal with the problem of "how do we get where we're going".  Examples are PRIVATE 
Baumol and Quandt (1964)tc  \f O  \l 9 "Baumol and Quandt (1964)";PRIVATE 
 Cohen and Axelrod (1984); Cyert and March (1963); Day (1967)tc  \f O  \l 9 " Cohen and Axelrod (1984); Cyert and March (1963); Day (1967)";PRIVATE 
 Day and Tinney (1968)tc  \f O  \l 9 " Day and Tinney (1968)"; and Eliashberg (1981)PRIVATE 


tc  \f O  \l 9 "".  Most of this work, like ours, uses decision rules which recognize the limitations in managerial information gathering and processing abilities.

Decision Dynamic:  


The particular decision dynamic we model is grounded in Simon's theory of bounded rationality, which recognizes the limitations of human information processing in the presence of large amounts of complex information.  Two features of bounded rationality are particularly relevant:  first, that the search for better solutions are undertaken only when it is observed that goals are not being met (reaction), and second, that the decision mode is one of implementing a solution which at least meets the goals, even though it may not be the best possible solution (satisficing).   The model of a reactive satisficing manager recognizes that many events are unanticipated, and some may not even be noticed until revenues begin to erode.  The model also recognizes that managers are capable and adaptive, and that they can find ways to improve their situation once a problem is detected.  While this is certainly not the only decision mode that occurs, we argue that it is an important one.  The premise that managers must rapidly deal with large amounts of complex information is consistent with observational studies which characterize managerial behavior as varied, brief and fragmented (see for example Martinko and Gardner, 1990; Mintzberg, 1971).   It is also consistent with perceptions, in both the academic and trade press, of the highly dynamic nature of retailing.  Corstjens and Doyle, for example, introduce a recent (1989) Marketing Science article as follows:


A central facet of modern retailing management is repositioning--adapting the business to a changing retail environment.  A retailer's existing positioning base is continually being eroded by maturing markets and aggressive competitors [emphasis added] seeking opportunities for profit and growth.   Often the repositioning required is small and gradual...Sometimes, however, the repositioning has to be more radical--a switch into new types of stores, a change into major new merchandise areas or a total re-presentation of the stores.

Similarly, Jeck (1991) notes that reactive behavior may arise not only because information is difficult to obtain, but because managers simply don't use information that is available:


For example, The Marketing Workbench Laboratory at Duke University has found that store by store reports of prices, which can be obtained by the decision makers, have not been used by many firms even though it is felt that many consumer purchase decisions are based on available stimuli at the point of purchase...


The popular press also frequently acknowledges this facet of retailing.  The Financial Times of Canada (April , 1993) described how one major supermarket chain (Loblaws) responded successfully to the competitive attack of warehouse clubs:


Loblaws' Gilles Potvin...survived the first wave of the warehouse invasion by scrambling astutely [emphasis added] to put his store on a sound footing.  He'll survive the next wave because he's discovered the warehousers can't be all things to all people. 

"Scrambling astutely" implies reactive, but capable, behavior.


We stylize reactive behavior by assuming that decision makers explicitly observe, and respond to, their own revenue levels.  They take no action until revenues drop below a threshold.  The decision maker can make a good decision, once prodded, in that the decision results in improved revenues: the scrambling is astute.  We do not require the decision to be "best"--it is a satisficing decision.  In the context of the spatial competition model, this means that the store attractiveness can be increased, drawing in enough extra revenue to exceed the threshold again.  This increase may be the result of simply resetting some marketing mix variable, or a truly innovative qualitative change.  For a food retailer, this might mean a change in advertising strategy (perhaps to increase consumer's sensitivity to travel costs), or an introduction of new high-margin delicatessen departments, or the extraction of wage concessions from unions followed by price reductions.  It might also be an imitation of a successful strategy--in some Western Canadian and U.S. cities, Safeway responded to the entry of large discounters by introducing its own low-cost chain, Food-For-Less.  Since our interest at this stage is in macro-structure, we do not explicitly model the type of decision. 

Environmental Adversity 


In a share attraction model, the total market demand may be assumed constant, allowing the modeller to focus on the distribution of share among firms.  Alternately, an additional term that does not involve any of the competitors in the market may be included in the denominator of the share expression.  This approach is used by Choi, DeSarbo, and Harker (1990, 1992) to introduce price elasticity into their logit model of spatial competition, and hence to preclude the possibility of an equilibrium with infinite prices and infinite profits.  In our model, the additional term is store specific and used to model the environmental component of unexpected adversity (which the reactive managers respond to) by incrementing the term each period at a randomly chosen store. Examples of such environmental effects are demographic changes (locally or globally), labour problems, supplier conflicts, closure of nearby complementing stores, even burglary and fire.  While retailers can receive positive as well as negative shocks, on balance it is unlikely that the overall effect of the environment on a firm will be positive;  this is consistent with Corstjen and Doyle's notion of "continual erosion".  For simplicity, we therefore concern ourselves only with this net effect, and model only negative shocks.  

Dynamics Algorithm

At time t = 0, store sizes and revenue thresholds (at which point managers take action) are initialized.  Store sizes are randomly assigned to all the stores in the plane.  This ensures that the results do not depend on a uniform distribution of store sizes.   Initial revenue is then calculated for each store, and thresholds initialized at some fraction of initial revenue (this procedure will be discussed in more detail in the section on transient behavior).  Because of the random initial store sizes, each store starts with different revenues, and will have a different threshold.  Again, this guards against results arising from uniformity in the model.  After initialization, stores are shocked by the addition of an increment δk, which remains constant over stores and time, to Kj.  Stores innovate, when their revenues drop below their individual revenue thresholds, by the addition of an increment δS, fixed over stores and time, to Sj.  The algorithm is:


1.
Shock a store chosen at random.


2.
Calculate revenues of all stores.


3.
If all stores have revenues above their threshold, increment time and return to 1; otherwise


4.
All stores whose revenues have dropped below their threshold innovate.


5.
Return to 2.

In the following section, we report model behavior.

3.  TRANSIENT AND STEADY STATE BEHAVIORPRIVATE 


As described above, a shock to an individual firm's market share through the attraction function reduces that firm's revenues.  This reduction may or may not drive the firm to react, depending on whether or not its minimum revenue threshold is crossed.  If it doesn't react, another shock is delivered to another random site.  If it does react, however, it increases its intrinsic attractiveness, and captures share (and hence revenues) from not only the extrinsic sources (Kj), but from any competitors with whom it shares customers--that is, any stores that have overlapping trading areas with its own trading area.  This causes a reduction in revenues of those stores, some of which may be driven to respond by innovating.  


We expect that the bounded rationality dynamic will eventually cause all firms to have revenues in the neighborhood of their thresholds for action, regardless of the initial conditions.  We first examine the convergence to steady state, to 1) confirm that it does converge, and 2) determine how long convergence takes.  

PRIVATE 
3.1  Transient Behaviortc  \l 3 "3.1  Transient Behavior"
ITable 1: Parameter values for transient test.

PRIVATE 
3, 3  

STORE SEPARATION IN x & y.  These are the number of customer 


origin points between each store in the x and y directions.

23, 23       
MARKET GRID SIZE.  The number of customer origin points in the 


market in x an y directions.  This gives a store grid of 8 x 8, or 64                 

stores.

1, 1          
EXPONENTS of DIST & SIZE.  Alpha and beta in the share model.

30            
SEED.  Initializes the random number generator.

3.0, .0001  
SIZE INITIALIZATION.  Size = a + b*ran; a, b are the parameters and 

ran a random number between 1 and 32,767.

4.5           
RESERVATION DISTANCE.  In units of customer origin points.

1000          
# OF ITERATIONS.  Total number of exogenous shocks delivered.

0.8 0.2      
MINREVENUE and INNOVATION.  The threshold level and the size 


of δS.

0.05  1.     
ADVERSITY. Initial value of Kj; and size of shock.

For expositional purposes, we describe an aggregate system-wide variable, namely total system revenues captured by the stores each period.    In the following, initial revenues are set 25% above the threshold for each store.  Parameters used are shown in Table 1.
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1Figure  2: Transient behavior: convergence of total profits in 64 store system.  Parameters as in Table 1.


Figure 2 shows the sum of the revenues of all 64 stores over 1000 iterations.  Note that it does indeed converge, and to 80% of the starting value, as expected.


The break in the slope around period 150 indicates the point where enough firms have been driven below their revenue threshold, and  consequently innovate, to noticeably slow the decline of total industry revenues.  Up to that point, only the external shocks have any impact on revenues, and so they are continually being  driven down.  As more and more firms become involved in innovation, the total revenue approaches its steady state value.  Note that there always remains some variation--the steady state is stochastic.  


We also tested the robustness of system convergence to more intense shocks and more powerful innovations.  Results were essentially the same with shock and innovation magnitudes 50 times and 500 times greater than those shown above, except that convergence was more rapid, and the break in slope where firms commence innovation occurs sooner.

3.2  The Steady State

With convergence established, we next examine the characteristics of the stochastic steady state.  A priori, we expect that, at steady state, all firms should be near their threshold, so it is possible for a single shock to produce a ripple or cascade of innovations across the system.  It is not obvious, however, what form the innovation cascades will take at steady state.  Since all firms are close to their threshold, will every shock cause a ripple effect where all firms innovate?  Or will the effect of a shock rapidly die away, with only a few firms in the local neighborhood of the shock innovating?  Alternately, from the perspective of the individual firm, what is the probability of a distant event affecting the firm: a certainty, or zero beyond a certain distance, or perhaps an exponentially declining function of distance?


To analyze the steady state, we follow other researchers who have studied complex spatial structures (e.g, White and Engelen, 1993; Batty et. al., 1989).  This work shows how simple models can produce complex spatial "fractals".  One critical aspect of fractal structures is that they are self-similar at any scale:  no matter how much you magnify the structure, it looks the same.  A simple approach to analyzing structure is to plot frequency distributions of certain characteristics of the system under investigation, such as the size of clusters.  In our case,  our clusters are avalanches of innovation (number of stores innovating) produced by a shock.  Note that these are temporal clusters, rather than the spatial clusters in the above cited articles.  Batty et. al.(1989), for example, tightly control the time dimension, to study spatial structure; we control the spatial dimension, and study temporal structure.  This involves counting the number of stores that innovate after each shock and plotting a frequency distribution.  If, at steady state, each shock produces a ripple that sweeps the entire system, this plot will produce a spike at the system size (i.e, all stores innovate).  At the other extreme, if only one store innovates with each shock, the distribution will be a spike at the cascade size of 1.  If a shock has (for example) an exponentially declining probability of affecting a store with distance, the frequency distribution will show many small avalanches, with an exponential decline with increasing size (number of stores).  And, finally, there is the possibility of self-similarity: a temporal fractal.  In this case, the size distribution will follow a power law.  On the face of it, it would seem that self-similar scaling is a rather special outcome, and the least likely of the four possibilities outlined above.

Avalanche Size Distribution--Base Case
[image: image5.wmf]
Figure 2:  Size Distribution of avalanches in the steady state, for the base case, with approximately 60% of shocks producing avalanches


Figure 3 is a log-log plot of the size distribution of the avalanches at steady state for the parameters given in Table 1, except that 1300 shocks are delivered and the innovation size is 1.0; this gives avalanches for 776 of the 1300 shocks
.  The steady state is not simple (all or one firm responding to a shock, for example).  At steady state, any number of firms may respond to a shock, but with a large  (many-firm) response less likely than a small response.  The striking feature is the rate of decline of frequency with increasing numbers of firms responding.  A large number of firms innovate simultaneously far more frequently than would be expected if the distribution resulted from one of the many random mechanisms which produce exponentially declining distributions.  Even more striking is that the decline is a remarkably precise power law (with an exponent of about -1.6 -- the slope of the regression line, superimposed on the plot
,
).

3.3 Discussion

Referring to work by Batty and others, in a review of research on nonlinear evolution of spatial systems, Nijkamp and Reggiani (1995) state, "Since in general such fractal structures were not deliberately imposed, the conclusion is warranted that the fractality of spatial systems might suggest a certain 'order principle' despite their irregularity."  This statement is certainly relevant here.  Casual observation of the evolution of the steady state suggests a high degree of (temporal) irregularity.  Random shocks occur, with usually very few stores responding; occasionally, large numbers respond.  The degree to which a wave of innovation spreads is quite irregular, and resonates with our intuitions of real world retailing.  Only a limited number of automobile dealerships have adopted the "no-dicker-sticker" policy, whereas penetration of scanner technology in grocery stores is very high.  In spite of the irregularity, the model displays a type of order in its (temporal) self-similarity.   We observe the possibility of Nijkamp and Reggiani's 'order principle' here.  We go further, however, in identifying the specific dynamic principle, and in studying its characteristics and implications.


Three general questions motivate the remainder of the paper.



1.  What is the the order principle operating in this model?  The literature on self-organization provides a theoretical framework to guide investigations.  



2.  How robust is the outcome?  If it depends on particular parameter values or model assumptions, then we are unlikely to ever observe it empirically.  On the other hand, the more robust, the more likely we are to see it in the real world.  Our numerical experiments show a high degree of robustness to parameter values and model structure.


3.  What are the implications?  Based on our discussion and results from the first two questions, we can extrapolate from existing theory to hypothesize that nearly chaotic systems are optimal. 
4.  DOES BOUNDEDLY RATIONAL MANAGEMENT OF SPATIALLY COMPETING FIRMS 

             LEAD TO SELF-ORGANIZED CRITICALITY?

  To distinguish the convergence to equilibrium of closed systems from convergence to steady state in exogenously driven systems, researchers refer to the latter as "self-organization".  In a geographical context, the self-organization process can generate stable spatial patterns resembling (for example) those of central place theory (Allen et. al., 1984).  A common feature of both self-organizing and equilibrium systems is that, as parameters change, sudden transitions to new, qualitatively different patterns can occur at certain critical parameter values.  The critical regions are narrow, relatively disorderly or chaotic, and often have fractal structure.    


In a seminal article entitled "Self-Organized Criticality" (SOC), Bak, Tang, and Weisenfeld (1988) (BTW) address the following question:  could observed fractal structure and power law distributions arise from self-organization to attractors that are critical regions, as opposed to attractors that are stable patterns (such as central place configurations) separated by disorderly fractal regions at critical parameter values?  BTW describe and analyze such a system.  We will briefly note some of the characteristics of the self-organized critical state:


1. power laws: at steady state, the distributions of system variables follow power laws.


2. poised: at steady state, a small localized disturbance can (but does not have to) cause an avalanche of response through the entire system.


3. weakly chaotic: neither highly predictable nor highly unpredictable.


4. extreme robustness: the steady state power law behavior is robust to changes in initial conditions, parameter values, and, most strikingly, even to some changes in model structure.  The steady state is an attractor for the system, in the sense that after any large shock, the system will return to the same (stochastic) state.


"Criticality" summarizes the first three points.  The final point justifies the label "self-organized".  
We next report a series of numerical experiments with the objective of establishing SOC as the "order principle"  operating in our model.

PRIVATE 
4.1  Robustness to model parameterstc  \l 3 "4.1  Robustness to model parameters"

One of the characteristics of the self-organized critical state is that the power law distribution is insensitive to model details.  We next investigate the effect of various values of the size and distance exponents, and of the reservation distance, on steady state behavior.  If the steady state we observe here is the same as the steady states labelled "SOC" that appear in the physical and life sciences, we should expect that the power law distribution holds over a range of parameter values.  And, if it does hold over a range of parameter values, the generality (and consequent liklihood of empirical observation) of the state is increased.

IITable 2: Parameters Investigated in Sensitivity Tests

PRIVATE 
Parameter
Meaning
Range


Comments
  α
   size exponent
0.5 - 3.0
Determines customer sensitivity to "size"

 





or "intrinsic attractiveness" of store. 







Empirical estimates of α are in this range.

  β
 distance exponent
0.5 - 3.0
Determines customer sensitivity to 







distance.  A larger value means store  







attractiveness drops more rapidly with 







distance, implying weaker competitive 







interactions between stores.  Range is 







representative of published estimates.

  R   reservation distance
2.9 - 6.5
Maximum distance customers will travel 






to a store.  Units are related to "customer

 





origin points", which are separated by 1

 





unit of distance, and store locations, which







are separated by 3 units.  R also is the







radius of a store's trading area. Like β, R







affects the strength of competitive

 





interaction.  At the low value (2.9), no 







store is within any other's trading area, and

 





each has a monopoly in a small area (of

 





radius 0.1).   If R dropped to 1.5, the 







system would be entirely decoupled, and

 





each store would be a monopolist.  When

 





R is 6.5, the trade area is 5 stores in

 





diameter, which approaches the size of the

 





8 x 8 system.


Empirical estimates of the exponents of the spatial interaction model have been made in a variety of contexts.  In PRIVATE 
Huff's (1962)tc  \f O  \l 9 "Huff's (1962)" original work, the size exponent α was assumed to be unity, and the distance exponent estimated.  In suburban Los Angeles, a beta value of 2.6 to 3.7 was found for clothing stores, and 2.1 to 3.2 for furniture stores.  PRIVATE 
Haines, Simon, and Alexis (1972tc  \f O  \l 9 "Haines, Simon, and Alexis (1972") estimated beta, again assuming alpha fixed, for grocery stores in various suburban and inner city neighbourhoods in a U.S. city.  They found values between 0.5 and 1.8. PRIVATE 
 Jain and Mahajan (1979)tc  \f O  \l 9 " Jain and Mahajan (1979)" estimated a multiattribute model for supermarkets in a "large northeastern metropolitan area", and found alpha values between .02 and .56 for their four intrinsic attractiveness attributes (sales area, number of checkout counters, credit cards accepted, and intersection location), and a beta value of 0.3, for the distance exponent. 


In summary, the range of exponents estimated empirically is from near zero to three, which defines the range of values of interest for sensitivity tests.  


The reservation distance is a limit on how far the customer is willing to travel.  It determines the number of stores to which the customer allocates his expenditures.  From the stores' point of view, it represents the radius of the trading area.  The larger the reservation distance, the greater the number of stores competing directly with each other.  Conversely, the smaller the reservation distance, the more monopolistic each store can become.  As the reservation distance decreases, the whole system will eventually decouple.


The base case used a store separation of 3 (measured in terms of customer origin units) and a reservation distance of 4.5.  (This puts eight stores in the trading area of every store not on the boundary of the system).  Reservation distances of 6.5 (with 20 competitor stores in a trade area), and 2.9 were also tested.  The latter is small enough that, even though stores share customers, no store is actually in any other's trade area. 

IIITable 3:  Summary of parameter sensitivity tests.

PRIVATE 


  α 
  β 
 R.D.

       RESULTS              

Base Case
  1
  1   
 4.5

power law size distribution


Alpha tests
 0.5
  1
 4.5

similar to base case





 2.0 
  1  
 4.5

similar to base case





 3.0
  1
 4.5

similar to base case          


Beta tests
  1
 0.5
 4.5

similar to base case               


 
  1
 2.0
 4.5

similar to base case               


   
  1
 3.0
 4.5

deviation from power law           

R.D. tests
  1
  1
 2.9

deviation from power law           


  
  1
  1  
 6.5

similar to base case               


The parameter meanings and ranges investigated are summarized in Table 2.  With two exceptions, the power law distribution of the number of innovating stores in each innovation wave was observed over these parameter ranges (Table 3).  The mean number of stores involved in each wave of innovation is between three and four in most cases above.


We note that large values of beta and small values of the reservation distance imply weak competitive coupling between the stores.  At some point, for example, the reservation distance will become small enough that the system will become entirely decoupled, and each outlet will have a spatial monopoly.  We would expect the SOC state to become progressively more difficult to attain as the competitive coupling decreases, and in fact, the power law starts to break down in these limits.  Also, the mean number of stores innovating per avalanche is lower (2.5 in both cases).  In all other situations, the system converges to a temporal fractal, at any time poised to unleash a wave of innovation, demonstrating robustness of the steady state to parameter values and to initial conditions.

4.2  Robustness to Model Structure

Is the steady state dependent on the particular dynamics and model structure used in the preceding?  To investigate this question, a second model was implemented.  Rather than incrementing the size, or intrinsic attraction only, the increment was added to the complete attraction function.  This represents an innovation that uniformly increases the store's attractiveness to all its customers.  The customer now allocates expenditures according to 
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where the increment is now added to aj.  


The model structure was also changed to introduce a cost linear with Sj, and the decision to innovate based on profits rather than revenues.  Since the store sizes are all initialized at different values, the costs, profits, and profit thresholds will all be different across the system.   

[image: image7.wmf]
Figure 3:  Changing the form of the innovation dynamic and the threshold from profits to revenues does not affect the avalanche size distribution.


Despite the fact that stores are now making decisions on profits, and that the innovations affect the total attractiveness (rather than just intrinsic) of the store, the power law distribution of the number of stores innovating again emerges.  This may be seen in Figure 8, which uses the base case parameters ( α,β = 1; reservation distance = 4.5 ).  The model was also run with a variety of other parameters.  The distribution only departs substantially from the power law when the reservation distance becomes small, or the distance exponent large; that is, when the stores are only weakly coupled through competition in the market.  In all other cases, the distribution of avalanche sizes followed a reasonable power law.  These results parallel the original model.  The steady state is robust to these changes in system structure and dynamics, which, once again, is consistent with other SOC models, and highlights the generality of the state.


A general characteristic of SOC models is that there is a minimal level of complexity required for SOC to emerge.  For example, at least two spatial dimensions are required--SOC will not appear in one dimensional models.  Another way we can simplify our model is by removing the 'no-purchase' or 'indirect competition' term, making the total demand inelastic.  We can deliver the shocks directly to the attraction term in this case.  The steady state in this model is one where each shock causes the entire system to respond--the size distribution is a single spike at the system size, and hence not fractal.  Once again, it appears that some minimal level of complexity--in this case, inclusion of a no-purchase or indirect competition option--is required in the model structure for SOC to occur.  Once we have that attained that complexity level, we see that SOC is robust to changes in both model parameters and structure.  We emphasis a striking difference between this result, and typical modelling exercises, where the additional complexities encountered in the real world may cause problems for a stylized model.  Here, we hope that there is  enough complexity in the real world for the theorized phenomena to arise!

4.3  Sensitivity to Initial Conditions

There is another interesting way in which the state is "critical": in terms of how sensitive  the evolution of the system is to small changes in initial conditions  (that is, "small" relative to the range of the system variables normally observed at steady state over a long period of time).  This sensitivity may be quantified in terms of the time evolution of the separation of two realizations of the system, which are initially separated by small distance in state space.  The two systems may converge, diverge or remain at a constant separation, either absolutely or on the average.  Divergent systems are commonly referred to as chaotic, and for the classic nonlinear systems, such as the logistic equation, the divergence rate is exponential.  The SOC state is also divergent, but at much slower power law rates.  It is therefore said to be weakly chaotic, or "on the edge of chaos".  As final justification for classifiying the steady state of the model developed here as self-organized criticality,  we show weakly chaotic divergence.


The system was initialized and run for 200 iterations (shocks) to reach steady state.  At this point, a copy was made of the system and perturbed by reducing Kj by for each store by a small amount.  The two systems were then allowed to run for another 300 iterations.  Each system receives the identical sequence of random shocks.  The state space examined was the 64 dimensional space of store revenues (ρ1 ,..., ρ64).  The separation between the perturbed system and the original system, given by the Euclidean distance
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was calculated each period, where the prime indicates the perturbed system.  This results in a 300-period trace measuring the separation of the two systems over time.


Any single realization of the separation trace fluctuates wildly, with large spikes, because a store in one system often will innovate before its counterpart in the other system, causing a temporary, maximal separation along that coordinate, and a consequent large separation in the distance measure.  To reduce the effect of these large spikes, an average of 100 different realizations
 of the separation trace was taken.  The average trace, shown in Figure 5, indicates that the systems diverge and are hence chaotic; however, the rate is constant (or power law with exponent one) rather than exponential, and so is only weakly chaotic.  Consistent with SOC in other fields, we may say this system, in steady state, is on the edge of chaos.
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Figure 4:  Divergence of two systems at steady state with small initial separation. Average of 100 realizations shows linear divergence rate in revenues state space.


We stated earlier that the system converges to the critical state, and showed this by examining the transient behavior of total revenues.  The divergence analyzed above is for two systems at the critical state.  In other words, the critical state is an attractor for the entire dynamics, but the state itself is weakly chaotic.  In steady state, each store's revenues will be above its threshold, but below that threshold plus an amount determined by the innovation increment.  This defines (in the case above) a 64 dimension hypercube in state space where the system will be located at steady state.  If the system is outside this hypercube in the negative direction on any dimension (a store is below the threshold), it will spontaneously track back into the hypercube (the store will innovate until it is above the threshold).  If the system is outside the hypercube in the positive direction on any dimension (a store is much above its innovation threshold), the shocks will eventually drive it back into the hypercube.  In this sense, the hypercube is an attractor for the dynamics.  Once at steady state, the system bounces around inside the hypercube.  The trajectory of the systems here are the ones which are now weakly chaotic.




	�. A technical issue is the relative sizes of the shocks and innovations.  Since each store is only allowed to innovate once for each shock, the shocks must not be too large relative to the innovation, or the stores will never be able to fully recover.  Customer allocations will eventually all go to the external competition, and revenues in the system will approach zero.  If the shocks are relatively small, on the other hand, it will take many shocks to drive revenues down after an innovation.  Since we are only interested in counting innovation avalanches, small shocks with no response place extra demands on computer resources.  In practice, the relative sizes of the shocks are set so that about half of them produce at least one innovation.   This is a compromise between keeping computer runs from being expensive, and allowing the system to recover between shocks.  We have experimented with different relative sizes to ensure that results are not sensitive to this choice, and results confirming this are available from the authors.


	�. The regression line and reported slope on this, and subsequent plots, are intended only as reference points to help with interpretation of the data.


	�. Many of the numerical experiments conducted with this model show "finite size effects" (Bak, Tang, and Weisenfeld, 1988) to varying degrees.  Propagating cascades of innovations may be prematurely truncated when they encounter a system boundary.  The effect appears as a deviation from power law behaviour at large avalanche sizes, i.e., there are fewer observations in which a large number of stores innovate in a time period.  The problem is a generic one of trying to infer system behaviour in the large limit, using only a finite system.  Results are available from the authors showing that the deviation here from power law behaviour at large avalanche sizes is consistent with the finite size effect.


	�. Each trace was developed from pairs of systems which had a different seed for the random number generator across pairs, but the same seed within pairs.


5.  CONCLUDING REMARKS�PRIVATE ��


	Following in the tradition of dynamic spatial modelling associated with, for example, Harris-Wilson models, we have embedded a bounded rationality decision dynamic in a model of spatial competition. We have shown that the resulting dynamic behavior displays a type of order, which, although only recently identified, has generated a vast amount of research, particularly in the physical and life sciences.  The system converges to a stochastic steady state characterized by temporal fractals, which are robust to a range of model parameters, and even changes in model structure.  At the steady state, the system is weakly chaotic.  These are the characteristics of self-organized criticality.  


	The likelihood of a system-wide wave of innovation in response to a small shock is much higher than the exponential decline one would expect from simple random mechanisms.�  From the viewpoint of an individual firm, this means that distant small events may ultimately impact the firm with a small, but non-negligible, probability, highlighting the importance of monitoring distant events, and the importance of being able to "scramble astutely".


	We depart from previous research by explicitly modelling a boundedly rational behavioral decision dynamic, to capture the conventional wisdom that much of competitive retailing involves repositioning in response to unexpected adversity, or scrambling astutely.  In contrast, Harris and Wilson (1978) interpret the managerial behavior implicit in their model as either balancing capacity (size) with demand, or as a heuristic where size is increased as long as profits are positive.  Static analytic equilibria are found with zero profits for all firms, which may represent profit-maximizing outcomes in the ideal case of pure competition.  In later papers (e.g., Clarke and Wilson, 1983), the mechanism is made explicitly dynamic (that is, an equilibrium is not assumed) and numerical methods show the possibility of oscillations as well as static equilibria.  Clarke and Wilson (1983) also note the need to study the impact of "environmental fluctuations" on system properties, although they do not pursue it.  Our model differs in both the decision behavior assumed for managers, and in the introduction of exogenous shocks which drive the system.  To the best of our knowledge, this is the first attempt to formally capture this type of behavior in dynamic systems.  


	The possibility of industry-wide waves of innovation parallels the observation that retailing as a whole occasionally undergoes dramatic shifts, such as described in the December 21, 1992 Business Week cover article, "Clout! How Giant Retailers are Revolutionizing the Way Consumer Products Are Bought and Sold".  The fact that a micro-level dynamic, invoking only bounded rationality and spatial competition, leads to a stochastic steady state involving frequent small changes and occasional sweeping changes at the macro-level, is intuitively appealing.  We need to emphasize that the critical behavior does not always arise in our models.  If we only model one dimension, or if the firms are monopolists, or if firms simply compete with each other with no environmental effects -- all simpler versions of the model which does show SOC -- the long run behavior is not SOC.  The state appears to require a certain minimal level of model complexity, but once that level is reached, it is quite robust to the model changes investigated here.  


	Research by Batty et. al. (1989), and White and Engelen (1993) in dynamic spatial modelling in regional economics has parallels to our work.  In both of these papers, power law distributions of spatial variables are shown to arise and are interpreted as spatial fractals.  These systems are "self-organizing" to states which have the power law characteristics of criticality.  The work we report here extends this research by investigating temporal behavior, and by demonstrating weak chaos and robustness to model form, thus identifying the 'order principle' postulated by Nijkamp and Reggiani (1995) as SOC.  


	This research has concentrated on managers who follow decision rules based on bounded rationality; future research might usefully examine the impact of other decision rules including optimizing behavior of various types.


	Extensions to system dynamics could also be investigated.  A limitation of the current model is the restriction to negative shocks and positive innovations.  We argue that these are the most reasonable net directions for shocks and innovations in the long run, and for simplicity model only these net effects.  The expectation that including a few positive shocks and unsuccessful innovations will not disturb the SOC state remains to be tested.  Systems with long run net unsuccessful innovation lack face validity--they assume that on average, managers take actions which worsen their situations.  The situation with net positive shocks might occur in certain situations such as a rapidly expanding economy and would be worth investigating.  We doubt we would observe SOC; however, as Corstjen and Doyle (1989) and others suggest, neither retailing academics nor practitioners think this scenario likely.  


	A second needed extension is entry and exit.  The extra layers of complexity would increase the difficulty of exploring the model and generalizing results.  The key advantage, however, is that this extension could be confronted with readily available bankruptcy data. 


	A particularly interesting issue for future research concerns which long-run system state (such as static Nash equilibrium, cyclic, SOC, or no orderly steady state) leads to highest system-wide profits.  On the face of it, we expect that neither the rigid, unchanging system of a static Nash equilibrium, nor a completely disordered, strongly chaotic system would be optimal.  Interestingly, work in theoretical biology which incorporates short-term localized optimizing behavior, and relates SOC to Nash equilibria (e.g., Kauffman and Johnson 1992) suggests a specific hypothesis.  Namely, that the critical state, poised on the edge of chaos, provides the highest system profits.  If true, this would have important policy implications:  how much and what kind of control does a system need to achieve the critical state?  Or, if left alone, would it self-organize to that state, by virtue of system profits being highest?  In a recent review article, Fischer and Nijkamp (1987) state "The dynamics of spatial systems may be the result of three types of different forces...", namely external influences, internal dynamics, and public policy.  The models in this paper incorporate the first two forces; future research can usefully examine public policy issues.
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