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ABSTRACT

This paper studies endogenous risk-taking by embedding a concern for status (relative
consumption) into an otherwise conventional model of economic growth. We prove that if
the intertemporal production function is strictly concave, an equilibrium must converge to
a unique steady state in which there is recurrent endogenous risk-taking. (The role played
by concavity is clarified by considering a special case in which the production function
is instead convex, in which there is no persistent risk-taking.) The steady state is fully
characterized. It displays features that are consistent with the stylized facts that individuals
both insure downside risk and gamble over upside risk, and it generates similar patterns
of risk-taking and avoidance across environments with quite different overall wealth levels.
Endogenous risk-taking here is generally Pareto-inefficient. A concern for status thusimplies
that persistent and inefficient risk-taking hinders the attainment of full equality.
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1. INTRODUCTION

This paper derives risk-taking behavior from the assumption that individuals derive utility
from status. In particular, we show how risk-taking behavior might coexist with risk-
averse behavior. Inspired by Veblen (1899) and Duesenberry (1949), we embed a concern
for relative consumption into an otherwise conventional model of economic growth.! That
is, individuals care about relative as well as absolute consumption. We presume that all
fair gambles are available: there is a competitive industry that can supply such gambles at
zero profit. We study the intertemporal equilibrium of such a model. The theory generates
persistent endogenous risk-taking, even when there is no intrinsic uncertainty, with minimal
restrictions on the shape of the utility function.

The main idea is simple. A deterministic equilibrium — i.e., an equilibrium with no
endogenous randomization — in our model induces convergence across dynasties, as in
the Solow or Ramsey parables. Such convergence implies there would be large gains in
relative consumption from small increases in absolute consumption. Hence the urge to take
risks becomes irresistible, destroying the presumption that the equilibrium is deterministic
tobegin with. We describe the dynamic equilibrium with risk-taking. The steady state of that
equilibrium generates individual insurance against substantial downside risk and gambling
over an intermediate range of outcomes. These explain the stylized facts that motivated the
classic contribution by Friedman and Savage (1948), to which we return below.

Our emphasis on dynamics clarifies that the origin of endogenous risk-taking is the
convergence of wealth induced by a strictly concave intertemporal production function.
We underline this reasoning by briefly studying the case of a convex production function.
In this case, when utility depends on status alone, there exists an equilibrium with no risk-
taking. That equilibrium arises because the convexity of the production function prevents
convergence.

Status, as defined here, involves a consumption externality. If risk-taking creates a gain in
status, for example, this gain must be counterbalanced by a loss to other parties. It is not
surprising then that the equilibrium gambling here is Pareto-inefficient— indeed this is true
even if some particular forms of gambling are Pareto-efficient.

Three strands of the literature inform our approach. Friedman and Savage (1948) reconciled
the simultaneous demand for insurance and lotteries by arguing that the former alleviates
downside risk and the latter exploits upside risk. They studied a von Neumann-Morgenstern
utility function that is first concave, then convex, and finally again concave. This model has
been criticized, both for its ad hoc specification of the utility function as well as for its
dependence on absolute wealth alone.” The latter generates marked shifts in behavior with
the overall growth of wealth, as individuals display an attenuated appetite for insurance

'Frank (1985), Easterlin (2002), Scitovsky (1976), and Sen (1973), among many others, emphasize status in a
similar sense; for empirical studies., see, e.g., Clark and Oswald (1996), and Dynan and Ravina (2007). There is
a small but growing literature dealing with dynamic models that studies how a concern with status influences
savings; see, e.g., Corneo and Jeanne (2001), Hopkins and Kornienko (2006), Arrow and Dasgupta (2009) and
Xia (2009).

*Markowitz (1952) was an early and trenchant critique.
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against downside risk.” Our main result delivers the Friedman-Savage findings with no
assumption at all on the curvature of utility in status. Moreover, the concern with relative
consumption creates similar patterns of risk-taking and risk-avoidance across environments
with varying wealth levels.

Second, we build on Robson (1992), who modifies Friedman-Savage utility to depend on
both relative as well as absolute wealth.* If utility is concave in wealth but convex in status,
it is not hard to generate a concave-convex-concave shape for utility as a function of wealth.
This construction can be immune to proportional wealth scaling. There is no presumption
in favor of Pareto-efficiency — there may be too much gambling, or perhaps even too little
of it

A limitation of such static models is that the concave-convex-concave utility pattern
arise from assumed underlying curvature properties of utility in absolute and relative
consumption, and of the wealth distribution. In the dynamic model we consider, no
corresponding properties need be exogenously specified. The results are driven by the
inevitability of convergence in any deterministic equilibrium, and the resulting need for
gambling in order to spread equilibrium status out within any generation.

Our model is also related to a literature that studies a breakdown of convergence induced by
“symmetry-breaking”: individuals taking different actions whenever society-wide distribu-
tions are highly equal. One approach in this strand emphasizes the endogenous diversity
of occupational choices at identical or near-identical wealth levels, leading to inequality.’
Another involves the use of income distributions to create endogenous “reference points”
with high marginal gains and losses in the departure of wealth from the reference points.
Then perfect equality will be destabilized by individuals accumulating capital to different
degrees.” Risk-taking plays an analogous role here.

Section 2 describes the basic setup. Section 3 studies the central model. Propositions
1 and 2 characterize a unique steady state, in which all dynasties bequeath the same
amount, and start each generation with identical wealth. However, endogenous risk-taking
induces a nondegenerate distribution of lifetime consumption. Proposition 3 shows that an
intertemporal equilibrium must exist, and that any equilibrium path from a positive initial
wealth distribution must converge to the unique steady state. Section 4 throws light on the

3Moreover, as discussed by Friedman (1953), there should be a distinct tendency for all individuals in the convex
region and beyond to gamble their way to more extreme final wealth levels.

*Friedman and Savage actually proposed a rationale of concave-convex-concave utility that involves relative
concerns. They sketched a model with two classes where changes in wealth within either class led to decreasing
marginal utility, but changes that promoted an individual from the lower class to the upper class led to increasing
marginal utility.

’In contrast, the Pareto-efficiency of the Friedman-Savage model is the main point in Friedman (1953). In this
context, we note that Becker, Murphy and Werning (2005) also consider the incentive to gamble in a static model
with rank-dependent status. They extend Robson (1992) in a number of ways, perhaps most significantly to a
case in which status is a separate good that can be bought and sold. This assumption restores Pareto-efficiency.
On a different note, Hopkins (2010) reexamines the consequences of greater inequality. If there is greater
inequality in the exogenous way the status good is distributed, this may lead to more gambling, in contrast to
the effect of greater inequality of the initial wealth distribution.

%See, e.g., Freeman (1996), Mookherjee and Ray (2003), Matsuyama (2004) and Ray (2006).

"Genicot and Ray (2010) develop this idea.
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role of the assumption of a strictly concave production function, by considering a special
case in which the production function is instead convex. Proposition 4 shows that a simple
deterministic equilibrium exists, and it is unique in a broad class of strategies. Section 5
studies some properties of the equilibrium of the central model, among them, its inefficiency
(Proposition 5). Section 6 sketches two extensions of the central model. First, in line with
Veblen, we observe that the equilibrium in this model of consumption-based status can
be reinterpreted as a separating equilibrium in which consumption signals unobservable
wealth. Secondly, we consider how the introduction of uninsurable productive risk might
improve the realism of the model, by creating dispersion in wealth and consumption. Section
7 summarizes and concludes.

2. Tue Basic SETup

2.1. Feasible Set. There is a continuum of dynasties of measure one. Each dynasty has
initial wealth w, distributed according to the cumulative distribution function (henceforth,
cdf) G.

Individuals consume and invest (or bequeath) in every period; each date represents a
lifetime. An individual can transform part or all of starting wealth w; into any gamble
with that mean. The realized outcome is then divided between consumption c; and k;.
Capital produces fresh wealth for the next generation according to the production function

(1) wir1 = f(ke),

We assume throughout that f is strictly increasing and continuously differentiable (C?) in k,
with f(0) > 0. For the main analysis in Section 3, we will suppose that f is strictly concave.
However, we entertain the possibility of the opposite curvature in Section 4. Indeed, under
our intergenerational interpretation, the “production function” f may well be nonlinear. For
instance, capital may have a human component — new generations acquire education and
make occupational decisions — and the rate of return to human capital will generally vary
with the level of such capital; see, e.g., Becker and Tomes (1979) and Loury (1981). This
interpretation presumes, in addition, that there are imperfect credit markets for education.®

2.2. Utility and Status. Each individual has a utility function u(c,s), which depends on
consumption and status. Status at a particular consumption level is the fraction of the
population who are consuming strictly less, plus a fraction of those who have exactly the
same level of consumption. That is, if F; is the cdf of consumption in society at date ¢, then,
for any ¢ > 0, status s is given by

() s = Fi(c) = nF; (o) + (1 = )Fi(c)

where 77 is some number strictly between 0 and 1 and F; (c) is the left hand limit of F; at c.?

81f there were a complete competitive market for borrowing and lending, individuals would face the linear
intertemporal budget constraint arising from the competitive interest rate, with an intercept term that captures
the additional value brought in by human capital, so f would be affine.

9Setting n = 1/2is attractive since total status is always then 1/2, across all distributions, with or without atoms.
But it is not needed in the formal analysis.
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In the special model of Section 4, we assume that u is a function of status alone.

2.3. Risk. Wesuppose that all fair gambles are freely available.'? Each individual can subject
part or all of that wealth to randomization, dividing the proceeds between consumption
and investment. Such randomization might involve participation in the state lottery, in
stock markets, or real-estate speculation. Under our interpretation, “consumption” is
lifetime consumption, so that within-period risk-taking will include occupational choice
or entrepreneurial ventures in addition to the assumption of short-term risk.

2.4. Dynastic Objective. Given initial wealth w, and a sequence of consumption distribu-
tions Fy, a typical dynasty maximizes the present discounted value of expected payoffs:

(3) Z 6tEI/l (Ct,Ft(Ct))
t=0

where 6 € (0,1) is the discount factor, and expectations are taken with respect to any
endogenous randomization. Of course, the constraint (1) must be respected at every date.

2.5. Equilibrium. Each dynasty pursues a policy, which involves a fair randomization of
wealth (including the possibility of no randomization at all), and a split of the resulting
proceeds between consumption and investment, all possibly conditioned on economy-
wide and private histories. The recursive application of these policies, aggregated over all
dynasties, yields a sequence of joint distributions for consumption, investment and wealth.
In particular, there is a sequence F = {F;} for consumption at each date, and a corresponding
sequence G = {G;} for wealth.

We assume anonymity, so only aggregates can be observed, and so single dynasty’s actions
are conditioned upon by others. Then each dynasty must take the entire sequence of
consumption cdfs F as given. Each such dynasty settles on an optimal policy, which involves
(possibly history-dependent) choices to maximize lifetime payoff as described in (3). An
equilibrium is a collection of optimal policies relative to the sequence F, which generates that
very sequence after aggregation.

A steady state is an equilibrium in which the cdfs of consumption and wealth are time-
stationary: there are distributions F* and G* such that F; = F* and G; = G" for all £.

3. ENDOGENOUS Risk-TAKING

We consider first the central model in which the production function is strictly concave and
utility depends on both absolute consumption and relative status. The strict concavity of the
production function implies that there is convergence of wealth levels. With no gambling,

1OWith a finite number of individuals, there is an issue of satisfying the overall budget constraint. This issue
disappears as the number of individuals tends to infinity, given the fairness of the gambles. Suppose there are
N individuals, each with consumption budget b > 0. We wish to allow individuals to take the gamble with cdf
F, say. Suppose this cdf has maximum consumption C and minimum 0. It is not hard to show that individuals
n = 1,..., 1, say, can be given independent draws from F, with individuals n = 7z + 1,...,N treated as residual
claimants, in such a way that 1i1/N — 1, with probability one, as N — oo.
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consumption levels would also converge implying that a small increment in consumption
would generate a “large” gain in status, creating strong incentives to deviate from the
presumed equilibrium. There must therefore be endogenous and persistent risk-taking in
equilibrium.

We describe the model. First, the production function is taken to be strictly concave, and a
little more:

Assumption 1. f is C!, strictly increasing and strictly concave in k, with £(0) > 0, 5f'(0) > 1, and
f(k) < k for all k large enough.

Next, utility is taken to be a function both of consumption and status:

Assumption 2. u(c,s) is C', with u(0,0) = 0. It is increasing in s, with us(c,s) > 0 for all (c, ).
It is strictly increasing and strictly concave in c, so that uc(c,s) > 0 and uc(c,s) < 0. For every s,
uc(c,s) = 0asc — oo, and uc(c,s) = oo asc — 0.

Finally, we assume that initial wealths are uniformly positive and bounded.

Assumption 3. The initial distribution G has compact support, bounded away from 0.

We make two remarks. First, under Assumption 1, an individual will never randomize on
k, whether or not continuation values are convex in investment. Any such randomization
can be dominated by investing the expected value of the investment, and then taking a fair
bet using the produced output. This domination is independent of the curvature of utility
or continuation values. Without loss of any generality, then, we can work with the equation:

fke) = b1 + kega,

where b; is the consumption budget of an individual at date ¢, and k. is deterministic.

Second, Assumption 2 does not impose any restriction on the curvature of u(c,s) in s.
However, we do assume that utility is strictly increasing in consumption, which formally
rules out the pure status model. This assumption matters for the existence theorem rather
than the convergence results. We discuss the pure status model separately in Section 4.

We first describe the equilibrium outcome in every period, and then embed this solution in
reduced form into the fully dynamic model.

3.1. Within-Period Equilibrium and Reduced Form Utility. Consider an equilibrium.
Suppose that at some date, the distribution of consumption budgets is given by H. With
risk-taking, there will be a new distribution of consumption realizations, F. Consider the
following characterization of the relationship of F to H. Since F is obtained from H by fair
randomizations (some possibly degenerate),

[R1] F is a mean preserving spread of H.

The “reduced form utility” to any agent is defined to be pu(c) = u(c, F(c)). If u(c) were not
concave, profitable deviations involving gambling would necessarily exist (given H(0) = 0).
That is




Randomization range Randomization range c

FiGure 1. THE Repucep Form UTILITY.

[R2] u(c) = u(c, F(c)) is concave and continuous. It follows that F is continuous so that F = F
and u(c) = u(c, F(c)).

Finally, all individuals who engage in randomization do so willingly. Hence utility is
convex over the range of any randomization. [R2] calls for concavity throughout. These two
restrictions imply linearity over the range of any randomization:

[R3] p is affine over the range of any randomization used in converting H to F. Specifically,
suppose that

C
f F(x)dx > f H(x)dx for all c € (c, 0),
0 0

Then p(c) = u(c, F(c)) = u(c, F(c)) must be affine on (c, ¢).

Figure 1 illustrates a u satisfying [R1]-[R3]. Note that there are two adjacent zones of
randomization here, leading to two affine segments of the reduced form utility with different
slopes. Because of this, no single equilibrium randomization has outcomes in both zones.

We can characterize the relationship of equilibrium consumption realizations and consump-
tion budgets in Proposition 1(ii). Proposition 1(i) is an intermediate step of independent
interest; it is the core observation for endogenous randomizations.

ProrositioN 1. (i) Under Assumption 2, if H has compact support with H(0) = 0, there is a unique
F associated with this H satisfying [R1]—[R3].

(ii) Under Assumptions 2 and 3, if {Hy, F;} is an equilibrium sequence of consumption budgets and
realizations, then at each t, Fy satisfies [R1]-[R3] relative to Hy.

The proofs of our results can be found in the Appendix, with technical details relegated
to a self-contained online Appendix. In particular, the Appendix summarizes the proof of
Proposition 1, while the online Appendix contains all details.
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3.2. Steady State. A steady state is an equilibrium outcome in which the same distribution of
wealth recurs period after period. We begin our discussion with the following implication
of Proposition 1(i):

CoroLLaRry 1 (to Proposition 1(i)). Make Assumption 2. For each b > 0, there is a unique cdf F
satisfying [R1]-R3] with the following properties:

(i) The mean of F equals b:

4) f cdF(c) = b.

(ii) The support of F is an interval [a, d], and there exists a > 0 such that

(5) u(c, F(c)) = u(a,0) + a(c —a) forall c € [a,d].

(iii) a > 0, so u(c) = u(c, F(c)) everywhere, and o = uc(a,0).
Moreover, the slope of the affine segment « is a nonincreasing function of b.
This corollary describes how a common consumption budget must be spread out by

gambling. All such gambles are fair, so we have (4). Moreover, [R3] tells us that u must be
linear over the overall domain of the gambles, which yields (5). Now we have:

ProrosiTioN 2. Make Assumptions 1 and 2. Then there is a steady state such that:

(i) Every individual (in a set of full measure) makes an identical investment k*, given by the unique
solution to 0f'(k*) = 1, and has equal starting wealth w* = f(k*) at every date.

(ii) The distribution of realized consumption is as in Corollary 1 with b = b* = f(k*) — k".
Moreover:

(iii) There is no other steady state with positive wealth for almost every individual.

Observe that any steady state can be augmented by the addition of any mass of dynasties with
zero initial wealth. Such dynasties will have zero investment and consumption. However,
Proposition 2 asserts that zero wealth is the only impediment to uniqueness.

3.3. Existence and Convergence. Two crucial results are needed to justify our focus on the
steady state. That steady state would be rather meaningless if equilibrium convergence to
this steady state were not guaranteed from an arbitrary initial distribution of wealth. Second,
we need existence of equilibrium. The following proposition resolves both these issues.

ProrosiTiON 3. Make Assumptions 1,2 and 3. Then

(i) Under any intertemporal equilibrium, the sequence of consumption distributions must converge
over time to the steady state distribution identified in Proposition 2.

(ii) An intertemporal equilibrium exists.
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It may be useful to provide an outline of the long argument leading to part (i) of Proposition 3;
see the printed and online Appendices for details. Begin with any intertemporal equilibrium.
By [R2], the the reduced-form utility functions u¢(c) = u(c, F¢(c)) are concave at every t. This
generates an optimal growth problem with time-varying one-period utilities. By a “turnpike
theorem” due to Mitra and Zilcha (1981),"! starting from any two (positive) initial wealths,
the resulting path of capital stocks must converge to each other over time. Therefore capital
stock sequences bunch up very closely. When they do, the preservation of concavity in p;
requires that consumption be suitably spread out using endogenous risk-taking. Further,
the supports of all the gambles involved must overlap. Hence all consumption budgets
ultimately fall into a range over which utility is linear (see [R3]). Thus, the marginal utility
of consumption of all agents is fully equalized after some date, so not only are capital
stocks are close together, they coincide after some finite date. The remainder of the argument
consists in showing that this (common) capital stock sequence must converge.

The proof of part (ii) is entirely relegated to the online Appendix. We make two remarks.
First, existence is shown in a more general setting than the model studied here, one that
maintains minimal curvature restrictions on the production function and also allows for
stochastic shocks to technology. Second, we establish the existence of an equilibrium in
Markovian policies: each individual employs a policy that is independent of her own past
choices and of x past distributions.

4. A SreciaL Case Wit No ENpoGeNoOUs Risk-TAKING

In this section, we illuminate the crucial role in the central model that is played by strict
concavity of the production function. We do this by explicitly considering a production
function that exhibits nondecreasing returns to scale. We also assume that utility depends
on status alone, for expositional ease. This setting permits a remarkably simple equilibrium
to exist. The convexity of the production function f implies that inequality of wealth
and consumption do not fall over time, and endogenous risk-taking does not arise. In
equilibrium, individual savings policies do not depend on the production or utility functions;
they depend only on the discount factor.

Consider the following restrictions:
Assumption 4. u depends on s alone and is C*, with u(0) = 0 and u’(s) > 0 for all s > 0.

Assumption 5. f is strictly increasing, Ct, convex in k, and f(0) = 0.

Assumption 6. The initial G satisfies G(0) = 0, and u(G(w)) is concave in w.'?

The pure-status restriction on u and the convexity of f are implausible, but we use them
here to illustrate a point. The convexity of f notwithstanding, we find an equilibrium (see

1, the formal proof, we use an extension of the Mitra-Zilcha theorem due to Mitra (2009).

12These requirements implicitly rule out the possibility of atoms—wealth levels shared by a positive measure
of individuals. If u(G(w)) is not concave, the arguments in the online Appendix can be applied here to show that
there will be an equilibrium in which individuals engage in fair bets in initial wealth, but only in the first period.
If G is the post-gambling wealth distribution, then u(G(w)) is concave, with linear ranges of 1(G(w)) associated
with nontrivial gambling. The subsequent equilibrium is then as described here.
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Proposition 4(i)) that generates a concave maximization problem for each individual. There
is no demand for risk.

This would be less striking if there were many deterministic equilibria, with varying
characteristics. However, Proposition 4(ii) shows that this equilibrium is the only “strict”
and “smooth” deterministic equilibrium, for general f. A deterministic equilibrium is strict
if at each date, individuals at all wealth levels have unique deterministic best responses.’?
In particular, in a strict equilibrium a consumption policy can be written as a function of
individual wealth alone. A deterministic, strict equilibrium is smooth if every individual

employs a sequence of differentiable consumption policies {c!}, with 0 < dci(w)/dw < 1 at all

wealths w and dates t.1*

ProrositioN 4. (i) Under Assumptions 4, 5, and 6, there exists an equilibrium in which almost
every dynasty undertakes no endogenous risk, and has constant status over time. In this equilibrium,
the policy

(6) ct = (1-90)wy,

is employed by almost every dynasty, which furthermore is independent of both the utility function
and the initial distribution of wealth.

(ii) Suppose that Assumption 4 holds, and f(0) = 0. Consider any strict deterministic smooth
equilibrium described by a family {ct} of consumption functions. Then ci(w) = (1 - d)w for all i, all t
and all w.

Several remarks apply to part (i) of this proposition. To begin with, the equilibrium has an
extremely simple structure. Equilibrium policy depends neither on the initial distribution
of wealth, nor the exact forms of the utility function and the production function. (The
equilibrium distributions do, however, depend on these functional forms.) In fact, the
equilibrium policy that we exhibit is the one that would be followed by an optimizing
planner with logarithmic utility defined on absolute consumption given a linear production
technology. What accounts for this structure is the delicate balance achieved across time
periods: status matters today, which increases the need for current consumption, but
it matters tomorrow as well, which increases the need for consumption tomorrow. In
equilibrium — with a convex production function — the two effects nicely cancel in a way
that induces a particularly simple equilibrium structure.

Second, the equilibrium we obtain induces a concave optimization problem for each dynasty.
With the linear equilibrium policy in place, all individuals would converge in wealth if the
production function were strictly concave, as they do, for instance, in the Solow growth
model. This would ultimately create a non-concave optimization problem for an individual,
with small amounts of accumulation giving rise to large status gains. In contrast, the
convexity of f ensures that wealth and consumption distributions stay dispersed at every
date: the lack of bunching induces a concave optimization problem. It is worth noting how,

13Note that each individual faces the same optimization problem apart from initial wealth.
14These restrictions on dci(w)/dw imply that all consumption levels are normal in current wealth.

15This observation may be viewed as a counterpart for rank-dependent status of the result established by Arrow
and Dasgupta (2009) where status derives from the average consumption level.
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in this sense, the convexity in the production function generates concavity in the individual
optimization problem.

Finally, precisely because of the convexity of the production function, there is no incentive
to gamble. While gambling has positive net expected value in the sense of output, the
endogenous concavity of payoffs from that output more than outweighs the convexity in
technology.'®

Proposition 4(ii) states that our simple equilibrium is the only deterministic equilibrium
in a broad class of policies. It is worth emphasizing that this result is independent of the
curvature of f. What would this imply in the central model discussed in the previous
section? Consider the following minor result:

ReEMARK 1. Suppose f satisfies Assumption 1, and that Assumption 4 also holds. Then there is no
strict, smooth deterministic equilibrium.

The proof of this assertion is simple. If such a policy sequence were to be an equilibrium,
then it must be of the linear form described in Proposition 4(ii). So convergence of all wealth
and consumption levels would occur. Once at a point in time sufficiently close to the limit
with complete equality, a deviator could then modify his strategy to increase consumption
slightly for an arbitrarily large number of periods, at the price of reduced consumption
thereafter. Such a deviation would generate a jump in status for this large number of
periods and therefore would have to increase the deviator’s total discounted payoff from
that point onward, which is the desired contradiction. While this Remark leaves open the
possibility of rather pathological deterministic equilibria, the obvious resolution is to allow
randomization.'”

5. SomE ImpPLICcATIONS OF THE CENTRAL MODEL

5.1. Risk-Averse and Risk-Preferring Choices. We now return to further consideration of
the central model developed in Section 3. Figure 2 provides a diagrammatic representation
of the steady state. The first panel depicts the steady state cdf F*. This panel is deliberately
drawn to suggest that F* has no particular shape, only that it “cancels” all curvature in u to
create the affine segment (between 4* and 4) in the second panel. In addition, zones [0, 4]

16However, if one can buy fair insurance over the outcomes of investment gambles, any strictly convex section of
the production function can be advantageously fully linearized, despite the concavity of utility. Such an outcome
requires the individual to commit to investing the realizations from endogenous gambling. The assumption of
strict convexity implicitly disallows such insurance against endogenous risk.

17Allowing randomization in consumption restores existence in this case, not surprisingly, since it is a limiting
case of the central model for which existence is available. For simplicity, suppose that all individuals have the
same initial wealth, wy, say. Now, if the assumptions of Remark 1 hold, there is an equilibrium that can be
derived simply from the standard one-agent problem of maximizing )2, ' Inb; subject to wy = ko + by and
fkt) = ke + by for t = 0,.... That is, if b; and k; solve this standard problem, then they also are the basis of
an equilibrium here. In this equilibrium everyone invests k; and randomizes the residual b; with the cdf of
consumption determined by the requirement that u(F;(c;)) = c;/2b}, for ¢; € [0,2b;], for t = 0,1...., under the
harmless normalization that u(1) = 1.



11

F*(c) : u (e, F*(c))

risk-taking here

N

no risk-taking here

FIGURE 2. THE FRIEDMAN-SAVAGE PROPERTY

and [d", co) must be present, over which no bets are taken and the utility function is strictly
18
concave.

The two regions taken together generate the phenomena that Friedman and Savage (1948)
sought to explain by their postulate of an (exogenous) utility function which is alternately
concave and convex. In the steady state, there is aversion to downside risk; no individual
would ever take bets that would lead them into the consumption region [0,a*], or beyond
d*. Yet there must be risk-taking in the region [a*, d"], as emphasized throughout the paper.

In the stark specification we study, the zones [0,4"] and [d", o) are actually not inhabited in
steady state. This outcome is an artificial consequence of our assumption that there is no
exogenous risk. But this is easy to incorporate; see the discussion in Section 6.1 below. If
this exogenous risk has realizations in the zone [0,a*] or [d*, o), insurance will avoid such
outcomes. If some of the exogenous risk is uninsurable, all three zones will generally be
actively inhabited in steady state. The central model then generates both a demand for
insurance and a demand for gambling.

Itis of interest is that this phenomenon —risk-aversion at the extreme ends of the distribution
coupled with risk-taking elsewhere — arises “naturally” in an environment where utility
depends on status. There is no need to depend on an ad hoc exogenous description of
preferences and distributions for an explanation.’

5.2. Scale-Neutrality. The use of relative consumption guarantees that the model is, in a
certain sense, scale-neutral. Two insulated societies with, say, two different production
technologies, will generally settle into two different steady states. Both the steady states
will generally exhibit the requisite patterns of risk-taking and risk-avoidance, even though

18The former zone is nonempty because u has unbounded steepness in c at the origin, and the latter is nonempty
because steady state gambles have bounded support.

P0ne might object that (unlike Friedman and Savage) our individuals do not strictly prefer to bear risk. In
the aggregate, however, risk-taking arises as a robust equilibrium phenomenon. From a revealed preference
perspective, we have accounted for the same observations as did Friedman and Savage.
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they may be located at different ranges in the wealth and consumption distribution. Unless
the Friedman-Savage utility function moves around to accommodate different wealths in
exactly the right way, it is not possible in their approach to generate the same phenomenon
at diverse aggregate wealth levels.

5.3. Pareto Inefficiency. Gambling in the Friedman-Savage world is ex-ante efficient: thereis
an assumed convexity in the utility function, and this convexity is well-served by risk-taking.
In our model, however, there is a pervasive consumption externality. I consider the status
consequences for me of my choice to gamble, but there must be consequences for others as
well, and these I ignore. Equilibrium risk-taking will then generally be Pareto-inefficient.

Consider first the special case in which u is jointly strictly concave in (c,s). Assign a status
rank of 1/2 to every individual that lives in a society of perfect equality. It then follows that
the steady state identified in Proposition 2 must be Pareto-inefficient. To prove this, simply
ban all gambling at the steady state. All individuals continue to invest k*, and utility in each
period is u(b*, 1/2). In contrast, in the steady state with gambling, utility is given by

fu(c, F(¢))dF(c) <u (fch*(c), fF*(c)dF*(c)) =u(b*,1/2),
where we use the strict concavity of u, and Jensen’s inequality.

But inefficiency is more pervasive, and it does not require the concavity of u in status. In such
cases, some gambling may well be Pareto efficient, in line with the static model of Robson
(1992) and one of the models of Becker, Murphy and Werning (2005). Nevertheless, such
efficient gambling cannot be an equilibrium outcome in the steady state derived here:

ProrositioN 5. Under Assumptions 1 and 2, the steady state identified in Proposition 2 must be
Pareto-inefficient.

5.4. Consumption Distribution in Steady State. Our model predicts key properties of the
equilibrium distribution of lifetime consumption. If u is jointly strictly concave in (c,s),
then Jensen’s inequality implies that u(b*, F*(b*)) < u(b*,1/2), so that b* < (F")~(1/2). (This
conclusion holds whether or not n = 1/2.) That is, the mean of the distribution is less
than the median, which conflicts with the stylized fact that the mean exceeds the median.
Utility functions which are concave in consumption, but convex in status, on the other
hand, are capable of generating the realistic prediction that the mean exceed the median.?’
Concavity in consumption and convexity in status was the central formulation of Robson
(1992), although the motivation there was independent of the argument here.

6. Two ExTteEnsions OF THE CENTRAL MODEL
6.1. Exogenous Risk. Suppose that there are production or ability shocks, so that we write
the production function as f(k, 0) where k > 0 is the bequest as before, and 0 € [0, 1] is the

realization of a random variable. We can replace Assumption 1 by

201t is not hard to produce an example of such a utility function where the mean exceeds the median.
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Assumption 7. f is increasing in (k,0), C' and strictly concave in k, with £(0,0) > 0 for all
0 € [0,1]. Moreover, for all O € [0,1], 6f1(0, 0) > 1 and there exists K > 0 such that f(k, 0) < k for
all k > K.

Suppose that this risk can be fully insured in actuarially fair fashion. Then, without any loss
of generality, the production function can then be taken as Eq f(k, 0) which is deterministic
and satisfies Assumption 1. So insurable risk makes no difference at all to the analysis.

However, the assumption that all risk is insurable is strong. There may be ability shocks
(f includes all income sources, including wage income), or part of k may be in the form of
human capital bequests that are subject to moral hazard. In this case, the full generality of
Assumption 7 is needed in place of Assumption 1. An equilibrium can still be shown to exist
(see the online Appendix). As long as the effect of the random variable 0 is small enough,
moreover, we conjecture that there will be a generalized stochastic steady state (or invariant
distribution) that is close to the deterministic steady state found here, with endogenous and
persistent risk-taking. The noise will disperse individuals into all three regions of the utility
function that arose in the case without noise — see Figure 2. Individuals who find themselves
in region where the noiseless utility was strictly concave above or below the region where
it was linear would then consume and invest in a way that tends to restore them to the
linear region. The stochastic steady state would then essentially involve balancing the noise
introduced by uninsurable risk and this restorative behavior.

6.2. Status from Wealth. Status in the current model derives explicitly from consumption
rather than wealth. Veblen (1899) coined the phrase “conspicuous consumption” as a
reflection of the capacity of observable consumption goods to signal underlying wealth
and thereby generate status. Although the current model cannot do justice to Veblen, the
equilibrium here can be reinterpreted as a fully separating equilibrium in which observable
consumption signals underlying unobservable wealth.?!

To see this, reconsider the steady state of our model, in which consumption generates status.
At the start of any date, almost all individuals have wealth w* = f(k*); but the after-gambling
wealth distribution has continuous cdf G*, say, which is the cdf of after-gambling wealth
k* + ¢, where the cdf of c is F*. That is, G*(k* + ¢) = F*(c), and status is F*(c) for all ¢ > 0. For
individual optimality, an individual who has any after-gambling wealth w > 0 must solve

(7) DE‘?,X[”(C' F*(c)) + ou(c, F*(c’))] subject to f(w —c) =c" +k,

where everyone else behaves in accordance with the equilibrium. That is, the individual
would choose to invest k* over the range of after-gambling wealth levels generated by the
consumption gamble F* and would find it optimal to take the gamble G* in the first place.

It is easy to interpret this as a separating equilibrium in which observable consumption
signals unobservable after-gambling wealth. Suppose everyone else behaves as before, and

21 There is yet another formulation in which wealth is observable, just as consumption is in our model. This is a
variant which is not accommodated. It would be of interest to extend our analysis to this case. It is not obviously
more difficult, but it is the task of another paper. (It is plausible that endogenous risk-taking would also arise if
there is convergence, but convergence would have to be proven.
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consider the two-period problem faced by any individual. This is
(8) max|u(c, G'(w(c))) + du(c’, G'(w(c')))| subject to f(w - ) = ¢’ + k',
Cc

where w(x) is the after-gambling wealth level inferred from observing consumption level x.
However, since w(x) = k*+x forall x > 0, it follows that G*(w(x)) = F*(x), our individual solves
(8) exactly as she solves (7). Moreover, by the one-shot deviation principle, no profitable
deviation across multiple dates can exist. It follows that the steady state equilibrium where
consumption generates status directly can be reinterpreted as a separating equilibrium where
consumption signals after-gambling wealth.*>

7. CONCLUSION

In this paper, we embed a concern for relative consumption into an otherwise conventional
model of economic growth, and examine its consequences. In our main result, obtained
with conventional concavity restrictions on the utility and production functions, there must
be persistent, endogenous and inefficient risk-taking in equilibrium.

More generally, there must be persistent consumption inequality. When that inequality is
generated “naturally”, as it is with a constant- or increasing-returns technology, behavior is
simple and deterministic. On the other hand, when inequality tends to diminish, as it does
under concavity, it is recreated by endogenously generated recurrent risk-taking.

What might be the real-world manifestations of such risk-taking? We take as wide a view as
possible. We might emphasize state lotteries,” as did Friedman and Savage, but that’s only
one example. One can also view the choice of career in this light, such as entrepreneurship,
or occupations in which the rate of return may be low on average, but risky. Consider, for
instance, the decision to become a professional basketball player, a sport with a low expected
rate of return. Or consider a restauranteur who invests heavily in a new eatery, despite a
half-life of six months for such establishments. Alternatively, consider a low-level member
of a drug gang who earns only about the minimum wage, faces the possibility of arrest and
imprisonment and of being murdered, and can only on average have only a modest chance
of promotion within the gang.

The framework might also apply to individual activity on financial markets, to the extent
that much of the risky outcomes may well be effectively idiosyncratic, depending on the
individual decision mix. There is also a large aggregate component here, which forms a
substantive topic meriting further research.?*

220ut of steady state, initial wealth levels may differ across individuals. However, realized observed
consumption is still strictly increasing in total after-gambling wealth, by the weak concavity of current utility
and the strict concavity of the relevant continuation value, so the argument can be generalized.

2The salient feature of state lotteries is that they offer a very small probability of a very large gain, and a
probability near one of a small loss. It is difficult to explain why these would be the only unfair gambles taken
in an expected utility framework. See Chew and Tan (2005) for an explanation using weighted utility.

24What would the current approach predict for the attitude of individuals to pure aggregate risk? Suppose that
a population of individuals can decide to either enter an activity with purely aggregate risk, or stay out. If they
stay out, they obtain constant consumption and a fluctuating status that depends on the number of individuals
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Such phenomena admit of alternative explanations — most obviously that the subjective
probabilities of success in these cases are exaggerated (perhaps — as in the case of
professional sports — by the media). But the current explanation is attractive in that it
does not rely on such misperception.
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APPENDIX

This appendix outlines the proofs of Propositions 1-5 as stated in the text. However, details
(including the proofs of Lemmas stated below) are relegated to a self-contained online
Appendix. In addition, the online Appendix contains a proof of existence of equilibrium in
a more general model, which implies Proposition 3(ii) in particular.

We maintain Assumptions 1-3 until further notice. We begin with a central lemma.
Lemma 1. At any date with equilibrium cdf of consumption F, u(c) = u(c, F(c)) is concave.

Proof of Proposition 1(i). First suppose that H has finitely many mass points. For any “initial
point” a such that H(a) < 1, and for any “terminal point” d > a, let [1Hd] be the affine segment
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that connects u(a, H(a)) to u(d, H(d)). Associated with [aHd] is a positive slope «, given by

o = W4, Hd)) - u(a, H))

d—a

Say that [aHd] is allowable if a > u.(a, H(a)).

LemwMma 2. If [aHd] is allowable, then the following distribution function F is well-defined and strictly
increasing: F(c) = H(c) for all ¢ ¢ (a,d), and

9) u(c, F(c)) = u(a, H(a)) + a(c — a)
forall c € (a,d).

For allowable [aHd] with associated distribution function F as described in Lemma 2, define

T () = f [F(z) - H)ldz

for x > a. Say that the allowable segment [aHd] is feasible if

(10) o (x) 2 0
for all x € [a,d), with equality holding at x = d:
(11) Iianay(d) =0

Because H has finitely many jumps and is flat otherwise, and because u is concave in c, it
is easy to see that from any a, there are at best finitely many feasible segments (there may
not be any). Construct a function d(a) in the following way. If, from g, there is no feasible
segment with d > g, set d(a) = a. Otherwise, set d(a) to be the largest value of d among all d’s
that attain the highest value of a.

Lemma 3. Let [aHd] and [aHd'] be two feasible segments. If ' > a, then d’ > d.
LemMa 4. For every a with H(a) < 1, a(a) and d(a) are well-defined.
LemMma 5. Suppose that a® | a with d(a") > a" for all n. Then d(a) > a.?

LeEmMma 6. Suppose that [aHd] with slope « is allowable, but (10) fails at x = d. Then the maximum
slope a(a) from a strictly exceeds «.

Now construct a utility function y* on consumption alone. In the sequel this will be the
unique reduced-form utility satisfying [R1]-[R3] for the distribution H. The construction
is always in one of two phases: “on the curve” or “off the curve”, referring informally to
whether we are “currently” following the original function u(x, H(x)) or are changing it in
some way. Start at a = 0, follow the original function u(a, H(a)) as long as d(a) = a (stay “on
the curve”); at the first point at which d(a) > @ — and Lemma 5 guarantees that if any d(a) > a
exists, there is a first such @ — move along the line segment [aHd(a)] (go “off the curve”).
Repeat the same process once back again “on the curve” at d(a).?® The reduced-form function
— call it y* — will be made up of affine segments in the regions in which d(a) > 4, and when

25This assertion is false for arbitrary sequences a"; consider a distribution H with a unique mass point at a. It is
clear that d(a) = 0, while d(a’) > 0 for alla’ < a.

26Tt could be that d(d(a)) > d(a) so that we immediately leave the curve again at d(a).
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d(a) = a, of stretches that locally coincide with u(c, H(c)). It is easy to see that there are at

most finitely many affine segments involved in the construction of u*.%

When H has finite support, this generates a reduced-form utility [RFU]J:
LeEmMA 7. u*, as given by the construction, satisfies [R1]-[R3].

Now we prove that a larger class of consumption budget distributions all admit reduced-
form utilities satisfying [R1]-[R3]. We begin by proving the uniqueness of such functions.

LemMA 8. For every distribution of consumption budgets H, there is at most one RFUL

To complete the proof of the first part of the proposition, we use an extension argument.
Consider the collection H of all cdfs H on [0, M], where M < oco. We seek the existence
of a mapping ¢ that assigns to each H € H its unique RFU u. Let H™ be the subspace
of H containing all H with finite support. Then H"™" is dense in H in the weak topology.
Lemma 7 tells us that the mapping ¢ is already well-defined on H"". To extend it, we use
the following three lemmas:

LemMA 9. Let G" converge weakly to G, and (a”,b") to (a,b). Then
b" b
f G"(x)dx — f G(x)dx asn — oo.

n

Lemma 10. Consider any sequence H" € H converging weakly to H € H, and suppose that there
exist associated RFUs u", along with distributions of realized consumption F". If F" converges
weakly to F, then u given by u(c) = u(c, F(c)) for all ¢ is the RFU for H.

Lemma 11. Every sequence in ¢p(H'™), the space of all RFUs for distributions in H™, admits a
weakly convergent subsequence.

Now proceed as follows. Pick any distribution H € H. We know that there is a
sequence H" € H™ that converges weakly to H. Each H" has its (unique) RFU p", with
associated distribution of realized consumptions F". By Lemma 11, {F""} admits a convergent
subsequence that weakly converges to some distribution F. By Lemma 10, this is an RFU for
H. By Lemma 8§, it is the only one, so the proof of Proposition 1(i) is complete.

To prove Proposition 1(ii), let {H;, F;} be a equilibrium sequence of consumption budgets and
realizations. We observe that H;(0) = 0 for all ¢+ > 0. This follows easily from Assumption
3 combined with the unbounded steepness of utility u(c, F(c)) at every date (recall that
uc(c,s) — oo as ¢ — 0 for any s); initial wealth positive implies optimal consumption is
positive at all dates.®

It follows that F;(0) = O for all t. For if F;(0) > 0, there must be a positive measure of
individuals who take gambles that have a positive probability of generating 0. All of them
have strictly positive budgets, so each such person would be better off by replacing her

27Indeed, the number of affine segments cannot exceed the number of atoms in H.
2WWe record this observation formally in Lemma 13 below.
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gamble by one that avoids 0, which yields a status payoff F;(0) that is discontinuously lower
than F(0). This contradicts that fact that we have an equilibrium to begin with.

It is now easy to prove [R1]-[R3], noting that [R2] is a direct corollary of Lemma 1. O

Proof of Corollary 1. Simply verify that the conditions in the statement of the corollary
correspond to [R1]-[R3] when the consumption budget is degenerate, and then apply
Proposition 1(i) for the case of a degenerate distribution H.%

To establish the very last assertion in the corollary, suppose that b is increased. Then, by
(4) in the main paper, the new distribution function F must have a higher mean. It is easy
to conclude that 2 and d must both increase. By the concavity of u.(.,0), @ = uc(a,0) cannot
increase. i

Proof of Proposition 2. Let F* be any steady state distribution of consumption. Then we know
that the RFU u*(c) = u(c, F*(c)) is concave. By Assumption 2 and the fact that u*(c) > u(c, 0)
for all ¢, yu* has unbounded steepness at 0. Consider the problem of choosing {b(i), k:(i)} to
maximize Y12 6" u*(b(i)), subject to wy(i) = by(i) + k(i) and wer1 (i) = f(ke (7)) for all ¢, with wy(i)
given. Because p* is concave and f is strictly concave, there is a unique optimal investment
strategy, assigning an investment k and consumption budget b for every starting wealth w.

One can check (see, e.g., Mitra and Ray (1984)) that for each individual, k; must converge to
a steady state. Because " has unbounded steepness at 0, this steady state value k" is defined
by 6f’(k*) = 1, provided wy(i) > 0. Finally, F* must be the distribution associated with the
degenerate consumption budget b* = f(k*) — k*. That verifies that if there is any steady state
with positive wealth for all individuals, it must be the one described in the Proposition.

We need to complete the formalities of showing that this outcome is indeed a steady state.
All we need to do is exhibit an optimal consumption policy. If the consumption budget b at
any date equals b* = f(k*) — k", take a fair bet with cdf F*, consuming the proceeds entirely.

We already know that the investment policy is optimal. So is the consumption policy,
because utilities are linear in realized consumption over the support of F*. m|

Proof of Proposition 3. We assume all the conditions given in the statement of the proposition.

Part (i): Convergence. We review the main argument. The first step is Lemma 12, based
on a turnpike theorem due to Mitra and Zilcha (1981) and Mitra (2009). It states that in
any equilibrium, the paths followed by all agents converge to one another. Lemmas 13 and
14 ensure that convergence occurs to some common sequence which has a strictly positive
limit point (over time). The second step is Lemma 16, which states that when all stocks
cluster sufficiently close to this common limit point, a bout of endogenous risk-taking must
force all consumption budgets to lie in the same affine segment of the “reduced-form” utility
function p at that date. Lemma 17 states that all individual capital stocks must fully coincide
thereafter. The remainder of the proof shows that this common path must, in turn, converge

29For part (iii) in particular, use the fact that u.(c,s) — oo as ¢ — 0 to argue that a > 0, and the concavity of the
RFU to argue that a = u.(a, 0).
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over time to k*, with consumption distributions converging to F*, the unique cdf associated
(as in Corollary 1) with d* = f(k*) — k"

Lemma 12. In any equilibrium, sup; ; k¢ () — ke(j)] = 0 and sup; ; |be(i) — be(j)] = 0 as t — oo.

LemMma 13. In any equilibrium, for any i with initial wealth strictly positive, by(i) > O for every t
and lim sup, by(i) > 0.

LemMma 14. There exists 0 > 0 so that for every € > 0, there is a date T

(12) br(i) € [0 —€,0 + €]

forall i.

LemMma 15. For any o > 0, there exists Y > 0 such that for all e < 0/2,
(13) Fi(o+€)—Fi(o—€) < e
independently of t.

We now combine Lemmas 14 and 15 to prove

LeEmMma 16. There exists a date T such that for every i, br(i) belongs to the interior of the same affine
segment of ur; in particular, u’(br(i)) is a constant independent of i.

Lemma 17. For every date t > T + 1, where T is given by Lemma 16, the wealths, investments and
consumption budgets of all agents must fully coincide.

In what follows, we consider only dates t > T. By Lemma 17, the equilibrium program has
common values at all dates thereafter: (wy, b;), where all these values are strictly positive.
By Proposition 1 and Corollary 1, the distribution F; is also fully pinned down at all these
dates. Denote by «a; the corresponding slopes of the affine segments of i, given by (5); these
too are all strictly positive.

LemMma 18. Suppose that for somet > T + 1, ky < kyyq and ay < apy1. Then ks < kgyq forall s > t.

LemMma 19. The common sequence of investments {k;}, defined for t > T + 1, must converge to k*,
which solves 6 f'(k*) = 1.

The proof of Proposition 3(i) then proceeds as follows. Lemma 16 assures us that there exists
adate T at which consumption budgets br(i) belong to the same affine segment of pi7 for every
i. Lemma 17 states that for every date t > T + 1, the wealths, investments and consumption
budgets of all agents must fully coincide. Lemma 19 states that the common sequence of
investments {k;}, defined for t > T + 1, must converge to k*, which solves 0 f’(k*) = 1.

At the same time, Corollary 1 asserts that for all t > T + 1, the equilibrium distribution of
consumptions must be the unique cdf associated with the common consumption budget
bi, where “association” is defined (and uniqueness established) in Proposition 1. Therefore
the sequence of consumption distributions must converge to the unique cdf associated with
b* = f(k*) — k*. This is the unique steady state of Proposition 2, so the proof is complete.

Part (ii): Existence will follow as a corollary of Proposition 6 in the online appendix. This
proves existence for a more general model than the one in the paper, in which the production
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function can have convex segments and there are possibly stochastic shocks to production.
O

Proof of Proposition 4. For this proof, Assumptions 4-6 replace Assumptions 1-3.

Part (i). Suppose that all individuals in a set of unit measure use the policy function (6). Let
G = {G}} be the resulting sequence of wealth distributions. Clearly, for every date t and for

every w in the support of Gyr1, Gr1(w) = Gy ( f “L(w)/ 6)). We have:
LemMma 20. u(G¢(w)) is concave for all dates t on the support of Gy.

Fix a date t. Suppose that a particular individual employs the policy (6) for all datess > t+1,
and that every other individual employs the policy (6) at all dates. Define V;,1(w’) to be the
discounted value to our individual under these conditions, starting from wealth w” and date
t + 1. Then status at every s > t + 1 is simply Fs(cs) = Gi41(w’), so that

(14) Via@') = (1-06)"u (G (@)

Now suppose that at date ¢, our individual has starting wealth w, does not randomize, and
chooses k € [0, w]. Then her lifetime payoff at that date is given by

u(Frw —k)) + Vi1 (f(K) = u(Fe(w — k) +6(1 — 8) " 1 (Gpr1 (f(K)))

u (Gt ([w = k1/(1 = 6)) + 61 = 8)"u (Gra1 (f(K)))

u (Gt ([w = K1/(1 = 6))) + 6(1 = 8)'u (G (k/0)),

where the first equality uses (14), the second uses the fact that Fy(c) = G (¢/(1 — 0)) for every
¢ 2 0, and the last uses Gy41(w) = Gy (f~(w)/9)).

By Lemma 20, this expression is concave in both w and k so no randomization is necessary
(assuming, as we do, that the stochastic outputs of investment randomizations cannot be
insured). Moreover, given the concavity of u(G(w)) and the assumption that u is C!, G; must
have left-hand and right-hand derivatives everywhere (G; (w) and G; (w) respectively), with

(15) Gy (w) > G; (w)
for all w. So a solution to the first-order condition
—'(r) G ([w = kI/(1 = 6)) (1 = 6)™" +6(1 = 0) 't (r41)Gy (k/6)67' =0
(16) > —u'(m)G; ([w—k/(1=6) (1 =8)" +6(1 = 0) "'/ (r41)G/ (k/6) 67!
(where 7, is the resulting status in date s, for s = t,¢ + 1) is an optimum. Using (15), we see

that k = 6w is indeed a solution to (16), so that by the one-shot deviation principle and the
fact that t and w are arbitrary, (6) is an equilibrium policy.

Part (ii).*° Notice that each individual is atomless and therefore has the same intertemporal
utility criterion as any other. Because the equilibrium is regular, we see that at any date,
the solution to the optimization problem is unique except at countably many wealth levels.
But it is easy to see that such a solution cannot admit more than one differentiable selection.
Therefore all individuals must use the same savings policy, which we denote by {c;}. Given

30We are indebted to a referee for suggesting this line of proof, which is simpler than the one we had.
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this environment, let V;(w) be the (lifetime) value to a person with wealth w at date . By
using exactly the same steps as in Part (i), we see that for every w, ¢ = ¢;(w) must maximize

(17) u(Ge (c71(0))) + 61 = ) u (Gi (s (w - 0))),

where s;(w) = w—c¢;(w) is also strictly increasing and differentiable, by regularity. By Lemma
1, u(F(c)) is concave in ¢, and so F; is differentiable almost everywhere. Consequently,
because Gi(w)) = Fi(cy(w)) and c; is differentiable and strictly increasing, G; is also
differentiable at a.e. w. Using the fact that optimal ¢ and w — ¢ are both strictly increasing
in w, we may therefore differentiate the expression (17) with respect to c at almost every w,
set the resulting expression equal to zero (it is the first-order condition) and cancel common

terms all evaluated at the same rank or same wealth to obtain
1 o) 1 0 1

w) 1-o6sj(w) 1-61-cj(w)

or ¢;(w) = (1 — ) for every t and for a.e. w. This completes the proof of the proposition. O

Proof of Proposition 5. We now revert to Assumptions 1-3 instead of Assumptions 4-6.
Consider the steady state F*; we may equivalently express it as a mapping from realized
status s € [0,1] to realized consumption c*(s) at status s, given by c*(s) = (F")"!(s). If the
outcome is Pareto-efficient, that mapping must maximize the integral

f u(c(s), s)ds

over all continuous and increasing functions c on [0, 1] with f c(s)ds = b. But it is easy to
see that a necessary condition for such maximization is that u.(c*(s), s) is constant as s varies
over [0, 1], or equivalently, that

(18) uc(c, F*(c)) = A for some A > 0,
for all ¢ € [a,d]. Now, recall from (5) that
u(c, F*(c)) = u(a,0) + afc —a]
for all ¢ € [a,d]. Because a = u.(c,0), it follows that F*(a) = 0. Consequently,
duc(c, F*(c))

dc
which contradicts (18). O

le=a = tiec(a, F*(@)) + ties(a, F(@)F' (@) = uee(a, F(a)) <0,



