Squares with a \bullet are used in the covering (these are the *covering squares*). The set \mathcal{A} lies in the intersection of all the covering squares. The covering is <u>consistent</u> because only squares that are inside the covering squares at all larger scales can be used in the covering at smaller scales.

$$a_n = 8^n$$

$$s_n = (1/4)^n \implies \log(a_n) = \frac{\log 8}{\log 4} \log(1/s_n)$$

First stage: $a_1 = 8$, $s_1 = (1/4)$

Final stage: see the link www.math.toronto.edu/courses/335/W03/cover_2.jpg

Second stage: $a_2 = 8^2$, $s_2 = (1/4)^2$

