Covering of a set \mathcal{A} with fractal dimension $D=\frac{\log 8}{\log 4}=1.5$

Squares with a • are used in the covering (these are the covering squares). The set \mathcal{A} lies in the intersection of all the covering squares. The covering is consistent because only squares that are inside the covering squares at all larger scales can be used in the covering at smaller scales.

$$
\begin{aligned}
& a_{n}=8^{n} \\
& s_{n}=(1 / 4)^{n} \quad \Longrightarrow \quad \log \left(a_{n}\right)=\frac{\log 8}{\log 4} \log \left(1 / s_{n}\right)
\end{aligned}
$$

First stage: $a_{1}=8, \quad s_{1}=(1 / 4)$
Final stage: see the link www.math.toronto.edu/courses/335/W03/cover_2.jpg

Second stage: $a_{2}=8^{2}, \quad s_{2}=(1 / 4)^{2}$

