Self-similarity of the Cantor Set

Let C denote the Cantor middle-thirds set. We define the interval $A_{a_1a_2\cdots a_n}$ to be the interval that contains all numbers whose ternary expansion begins with $a_1a_2\cdots a_n$;

$$A_{a_1 a_2 \cdots a_n} = \{ x \in [0, 1] \mid [x]_3 = .a_1 a_2 \cdots a_n a_{n+1} a_{n+2} \cdots \}$$

= $\{ x \in [0, 1] \mid [x]_3 = .a_1 a_2 \cdots a_n \vec{a} \}$

where \vec{a} is an arbitrary (infinitely long) sequence of $0^{\prime s}$, $1^{\prime s}$, and $2^{\prime s}$. For example,

$$A_{0} = [0, 1/3]$$

$$A_{1} = [1/3, 2/3]$$

$$A_{2} = [2/3, 1]$$

$$A_{00} = [0, 1/9]$$

$$A_{22} = [8/9, 1]$$

$$A_{022} = [8/27, 9/27]$$

Then we define the sets $C_{a_1a_2\cdots a_n}$ to be those parts of the Cantor set that lie in $A_{a_1a_2\cdots a_n}$;

$$\mathcal{C}_{a_1 a_2 \cdots a_n} = \mathcal{C} \cap A_{a_1 a_2 \cdots a_n}$$

= $\{ x \in \mathcal{C} \mid [x]_3 = .a_1 a_2 \cdots a_n \vec{c} \}$

where \vec{c} is an arbitrary sequence of $0'^s$ and $2'^s$ (note that for $\mathcal{C}_{a_1a_2\cdots a_n}$, $a_i \in \{0,2\}$).

Let $3^m \mathcal{C}_{a_1 a_2 \cdots a_n} = \{x \mid x = 3^m y \text{ for some } y \in \mathcal{C}_{a_1 a_2 \cdots a_n}\}$. That is, $3^m \mathcal{C}_{a_1 a_2 \cdots a_n}$ are the numbers in $\mathcal{C}_{a_1 a_2 \cdots a_n}$ multiplied by 3^m . Now recall that $[3^m x]_3$ is the ternary expansion of x shifted to the left by m places (if m is positive). Therefore, $3^n \mathcal{C}_{a_1 a_2 \cdots a_n} = \{x \mid [x]_3 = a_1 a_2 \cdots a_n \cdot \vec{c}\}$. Now if we let $z = a_1 3^{n-1} + a_2 3^{n-2} + \cdots + a_{n-1} 3 + a_n$ (so that $[z]_3 = a_1 a_2 \cdots a_n$), then

$$3^n \mathcal{C}_{a_1 a_2 \cdots a_n} - z = \{x \mid [x]_3 = .\vec{c} \}$$

where \vec{c} is an arbitrary sequence of $0^{\prime s}$ and $2^{\prime s}$ (this is because if x is a number such that $[x]_3 = .a_1 a_2 \cdots a_n \vec{c}$, then $[3^n x - z]_3 = .\vec{c}$).

In other words, the set of numbers $3^n C_{a_1 a_2 \dots a_n} - z$ are precisely those numbers in [0, 1] whose ternary expansion contains only $0^{'s}$ and $2^{'s}$. That is, $3^n C_{a_1 a_2 \dots a_n} - z$ is the Cantor set. This demonstrates the self-similarity of the Cantor set (it is similar to pieces of itself after magnifying and shifting the pieces). For example,

$$3C_{2} - 2 = C$$

$$9C_{22} - 8 = C$$

$$27C_{022} - 8 = C$$

(recall the sets A_2 , A_{22} , and A_{022} given above). You can also see this by looking at Figure 2.5, page 68, in the text.