## Self-similarity of the Cantor Set

Let $\mathcal{C}$ denote the Cantor middle-thirds set. We define the interval $A_{a_{1} a_{2} \cdots a_{n}}$ to be the interval that contains all numbers whose ternary expansion begins with $a_{1} a_{2} \cdots a_{n}$;

$$
\begin{aligned}
A_{a_{1} a_{2} \cdots a_{n}} & =\left\{x \in[0,1] \mid[x]_{3}=. a_{1} a_{2} \cdots a_{n} a_{n+1} a_{n+2} \cdots\right\} \\
& =\left\{x \in[0,1] \mid[x]_{3}=. a_{1} a_{2} \cdots a_{n} \vec{a}\right\}
\end{aligned}
$$

where $\vec{a}$ is an arbitrary (infinitely long) sequence of $0^{\prime s}, 1^{\prime s}$, and $2^{\prime s}$. For example,

$$
\begin{aligned}
A_{0} & =[0,1 / 3] \\
A_{1} & =[1 / 3,2 / 3] \\
A_{2} & =[2 / 3,1] \\
A_{00} & =[0,1 / 9] \\
A_{22} & =[8 / 9,1] \\
A_{022} & =[8 / 27,9 / 27]
\end{aligned}
$$

Then we define the sets $\mathcal{C}_{a_{1} a_{2} \cdots a_{n}}$ to be those parts of the Cantor set that lie in $A_{a_{1} a_{2} \cdots a_{n}}$;

$$
\begin{aligned}
\mathcal{C}_{a_{1} a_{2} \cdots a_{n}} & =\mathcal{C} \cap A_{a_{1} a_{2} \cdots a_{n}} \\
& =\left\{x \in \mathcal{C} \mid[x]_{3}=. a_{1} a_{2} \cdots a_{n} \vec{c}\right\}
\end{aligned}
$$

where $\vec{c}$ is an arbitrary sequence of $0^{\prime s}$ and $2^{\prime s}$ (note that for $\mathcal{C}_{a_{1} a_{2} \cdots a_{n}}, a_{i} \in\{0,2\}$ ).
Let $3^{m} \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}=\left\{x \mid x=3^{m} y\right.$ for some $\left.y \in \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}\right\}$. That is, $3^{m} \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}$ are the numbers in $\mathcal{C}_{a_{1} a_{2} \cdots a_{n}}$ multiplied by $3^{m}$. Now recall that $\left[3^{m} x\right]_{3}$ is the ternary expansion of $x$ shifted to the left by $m$ places (if $m$ is positive). Therefore, $3^{n} \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}=\left\{x \mid[x]_{3}=a_{1} a_{2} \cdots a_{n} \cdot \vec{c}\right\}$. Now if we let $z=a_{1} 3^{n-1}+a_{2} 3^{n-2}+\cdots+a_{n-1} 3+a_{n} \quad\left(\right.$ so that $\left.[z]_{3}=a_{1} a_{2} \cdots a_{n}\right)$, then

$$
3^{n} \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}-z=\left\{x \mid[x]_{3}=. \vec{c}\right\}
$$

where $\vec{c}$ is an arbitrary sequence of $0^{\prime s}$ and $2^{\prime s}$ (this is because if $x$ is a number such that $[x]_{3}=. a_{1} a_{2} \cdots a_{n} \vec{c}$, then $\left.\left[3^{n} x-z\right]_{3}=. \vec{c}\right)$.

In other words, the set of numbers $3^{n} \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}-z$ are precisely those numbers in $[0,1]$ whose ternary expansion contains only $0^{\prime s}$ and $2^{\prime s}$. That is, $3^{n} \mathcal{C}_{a_{1} a_{2} \cdots a_{n}}-z$ is the Cantor set. This demonstrates the self-similarity of the Cantor set (it is similar to pieces of itself after magnifying and shifting the pieces). For example,

$$
\begin{aligned}
3 \mathcal{C}_{2}-2 & =\mathcal{C} \\
9 \mathcal{C}_{22}-8 & =\mathcal{C} \\
27 \mathcal{C}_{022}-8 & =\mathcal{C}
\end{aligned}
$$

(recall the sets $A_{2}, A_{22}$, and $A_{022}$ given above). You can also see this by looking at Figure 2.5, page 68 , in the text.

