Complicated dynamics from simple functions......

Math Outside the Box, Oct 182016

Randall Pyke rpyke@sfu.ca

This presentation: www.sfu.ca/ ${ }^{\text {rppye }} \rightarrow$ Presentations \rightarrow Dynamics

Discrete dynamical systems: Variables evolve in time in discrete time steps.
Some examples:

- Temperature on Burnaby Mountain each day at noon
- Density of traffic on Highway \#1 eastward at Gaglardi overpass each hour
- Total amount of sunshine (minutes) each day at Stanley Park
- Number of salmon running Wilson creek each day
- Closing price of a stock each day
- Population of bees each spring (e.g. March 1) in a bee farm in Richmond
- Number of people infected with Zika virus each month in Florida

review article

Simple mathematical models with very complicated dynamics

Robert M. May*

First-order difference equations arise in many contexts in the biological, economic and social sciences. Such equations, even though simple and deterministic, can exhibit a surprising array of dynamical behaviour, from stable points, to a bifurcating hierarchy of stable cycles, to apparently random fluctuations. There are consequently many fascinating problems, some concerned with delicate mathematical aspects of the fine structure of the trajectories, and some concerned with the practical implications and applications. This is an interpretive review of them.

There are many situations, in many disciplines, which can be described, at least to a crude first approximation, by a simple first-order difference equation. Studies of the dynamical pronerties of such modelc ucually concict of finding conctant

Fourth, there is a very brief review of the literature pertaining to the way this spectrum of behaviour-stable points, stable cycles, chaos-can arise in second or higher order difference

Deterministic vs random (stochastic) dynamical systems

A random (or stochastic) dynamical system is an evolving system that has random laws governing it's evolution and/or random initial conditions. Here's an example of a random discrete dynamical system $\left\{y_{0}, y_{1}, y_{2}, \ldots\right\}$;

- choose $y_{0} \in Z$ (this is a deterministic initial condition, not a random one)
- to determine y_{1} roll a die and add that number to y_{0}. This gives y_{1}.
- to obtain the next number in the sequence, y_{i+1}, roll a die and add the number turning up to y_{i}.

A feature of this example (as for all random systems) is that the future evolution is unpredictable; it cannot be predicted exactly (although one can calculate the probabilities that the future states may assume). Also, every time you create this sequence even using the same initial condition y_{0}, you typically get different evolutions; it is not determined by the initial conditions.

Deterministic vs random (stochastic) dynamical systems

A deterministic dynamical system is one where the dynamical laws are deterministic (i.e., they are specified completely and unequivocally, not randomly). For example, the discrete dynamical system $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}$ defined by;

- choose $x_{0} \in \mathrm{R}$
- $x_{1}=3 x_{0}+2$
- $x_{2}=3 x_{1}+2$
- continue in this manner; $x_{i+1}=3 x_{i}+2$

In a deterministic dynamical system the evolution is, at least in principle, completely predictable. That is, given the initial condition one could predict exactly what the future evolution is. Also note that creating this sequence with the same initial condition x_{0} will always result in the same evolution x_{1}, x_{2}, \ldots. We can express this fact mathematically as $x_{n}=g\left(n, x_{0}\right)$ for some (perhaps not explicitly available) function $g ; x_{n}$ is uniquely determined by n and x_{0} alone.

Mathematically modelling (deterministic) discrete dynamical systems.
Dynamics determined by a function $f: \mathbf{R} \rightarrow \mathbf{R}$ (one dimensional)
Initial point (data) x_{0} Subsequent points; $x_{1}=f\left(x_{0}\right)$

$$
\begin{aligned}
& x_{2}=f\left(x_{1}\right) \\
& x_{3}=f\left(x_{2}\right) \text { (iteration) }
\end{aligned}
$$

Example:

$$
\begin{aligned}
& f^{2} \equiv f \circ f \\
& f^{3} \equiv f \circ f \circ f \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
f(x) & =x^{2}-1 \\
x_{0} & =-2 \\
x_{1} & =f\left(x_{0}\right)=f(-2)=3 \\
x_{2} & =f\left(x_{1}\right)=f\left(f\left(x_{0}\right)\right)=f^{2}\left(x_{0}\right)=f(3)=8 \\
x_{3} & =f\left(x_{2}\right)=f\left(f\left(x_{1}\right)\right)=f\left(f\left(f\left(x_{0}\right)\right)\right)=f^{3}\left(x_{0}\right)=f(8)=63
\end{aligned}
$$

Visualizing orbits $\left\{x_{0}, x_{1}, x_{2}, \ldots\right\}, x_{i}=f\left(x_{i-1}\right)=f^{i}\left(x_{0}\right)$

Types of orbits: Periodic orbits, aperiodic orbits

$$
\underline{\text { Period } 1}\{-2,-2,-2,-2, \ldots\} ; \quad f(-2)=-2 \text { (fixed point) }
$$

Period 2 $\{2,-1,2,-1,2,-1,2,-1, \ldots\} ; f(2)=-1, f(-1)=2$

Period 3 . $\{3,-2,4,3,-2,4,3,-2,4,3, \ldots\}$

Aperiodic $\quad\{-1.2,2,3.1,5.4,-7.3,11,13.5,-1.8,5.5,19.2,-12,23.5, \cdots\}$

Visualizing orbits

Aperiodic orbit ("ergodic" orbit)

The logistic equation: $f_{a}(x)=a x(1-x), \quad 0 \leq a \leq 4$

The logistic equation: $f_{a}(x)=a x(1-x), \quad 0 \leq a \leq 4$

A summary of the dynamics of the logistic equation:

$\underline{\text { Graphical iteration }} \quad x_{i}=g\left(x_{i-1}\right)$

$$
x_{1}=g\left(x_{0}\right) \quad x_{2}=g\left(x_{1}\right) \quad x_{3}=g\left(x_{2}\right)
$$

Attractive (stable) fixed points! (nearby points are attracted to the fixed point)

Logistic equation: $\quad f_{a}(x)=a x(1-x), \quad a \approx 3.2$

Graphical iteration: attraction to the period 1 orbit

Graphical iteration: attraction to a period 2 orbit $\quad\left\{x_{1}, x_{2}, x_{1}, x_{2}, \ldots\right\}$

Period 2 orbit of $f \rightarrow$ period 1 orbit of $f^{2}(=f \circ f)$

f

A period 4 orbit of f

.. is a period 2 orbit of $f^{2}(=f \circ f)$

... and a fixed point of $f^{4}(=f \circ f \circ f \circ f)$

Graphical iteration: aperiodic orbit

As a varies, the orbital structure of $f_{a}(x)=a x(1-x) \quad$ changes.....

As a varies, the orbital structure of $f_{a}(x)=a x(1-x) \quad$ changes.

We say \bar{a} is a bifurcation point of f_{a} if the orbital structure f_{a} changes at \bar{a}

To determine bifurcation points, we can try to find periodic points analytically...

A bifurcation curve is a plot of the periodic points p as a function of a; $\mathrm{p}(a)$. Plotting the bifurcation curves on the a-x plane we obtain a bifurcation diagram.

We begin by finding the periodic points of the logistic equation. For fixed points (period 1), we solve $a x(1-x)=x \rightarrow a x^{2}+(1-a) x=0$. The solutions of this are $x=0$ and $x=(a-1) / a$.

For period 2 points we solve $f_{a}^{2}(x)=x$;

$$
\begin{array}{r}
a[a x(1-x)](1-[a x(1-x)])=x \\
a^{3} x^{4}-2 a^{3} x^{3}+a^{2}(a+1) x^{2}+\left(1-a^{2}\right) x=0
\end{array}
$$

We know $x=0$ is a solution as well as $x=(a-1) / a$ (the fixed points). Factoring these terms out of the equation we obtain

$$
a^{2} x^{2}-a(1+a) x+1+a=0
$$

Applying the quadratic formula to this we find that the roots are given by

$$
\frac{(1+a) \pm \sqrt{(a+1)(a-3)}}{2 a}
$$

Note that these period 2 points occur only when $a>=3$

Here is a plot of the bifurcation curves for the period 1 and period 2 orbits (ignoring their stability types);

$$
\begin{aligned}
p_{a} & =\frac{a-1}{a} \\
x_{1, a} & =\frac{a+1+\sqrt{(a+1)(a-3)}}{2 a} \\
x_{2, a} & =\frac{a+1-\sqrt{(a+1)(a-3)}}{2 a}
\end{aligned}
$$

Graphical analysis of the period doubling bifurcation.
Period 2 orbit appears at $a=3$

$f_{a}(x)$ and $f_{a}^{2}(x)$ for $a=2.5$

and for $a=3.3$

And similarly, the period 2 orbit bifurcates into a period 4 orbit....

Another way to obtain a kind of bifurcation diagram is to look at the orbits numerically for various values of a and try to identify periodic orbits..... Final State Diagram

Here's what we do: Choose an a. Then numerically plot the orbit starting at some point $x 0$. Throw away the first 1000 points in the orbit and then plot the next 1000. If there is a (stable) periodic point then the last 1000 points will settle in on it.

Here's what the histograms look like;

Period 1

Period 2

Period 4

Now look down on these, from above.
Here's what you see:

2 points

Line these up, along the a-axis

Let's do it for more a values;

And more;

And more;

Final state diagram for logisitic equation, $\quad 2.8<a<4$

The period doubling bifurcations accumulate to $a_{\infty}=3.5699 \ldots$

Some features of the final state diagram for the logistic equation:

1. Self similarity
2. 'Shadow' lines
3. Ordering of periodic orbits

Self-similarity of the final state diagram

Successive zoom ins; left to right, top to bottom

$$
\begin{aligned}
& a=4 \\
& \\
& a=3.68
\end{aligned}
$$

Shadow lines......

Can be computed

Shadow lines......

What are they?
They are peaks in the histogram caused by 'squeezing' of the points in the orbit due to the peak in $f(x)$....

ν_{a} is the image of points near the peak at $x=0.5$ Subsequent iterates, $f_{a}^{2}\left(\nu_{a}\right), f_{a}^{3}\left(\nu_{a}\right), \ldots$ produce weaker peaks in the histogram.

Plots of graphs of $f_{a}\left(\nu_{a}\right), f_{a}^{2}\left(\nu_{a}\right), \ldots, f_{a}^{5}\left(\nu_{a}\right)$ as a function of a.

From left of a_{∞} have period doublings; 1, 2, 4, 8,
From right of first cusp have all the odd integers; $3,5,7, \ldots$.
From right of second cusp, have all $2 x$ (odd) integers; $6,10,14, \ldots$.
From right of third cusp, have all $4 x$ (odd) integers; $12,20,28, \ldots .$.

If there's an orbit of period k, then there is an orbit of all periods m where m is to the left of k in this ordering. (Once an orbit has appeared, it remains for all larger parameter values.)

The Charkovsky ordering of the positive integers;

$$
\begin{aligned}
& 3 \gg 5 \gg 7 \gg 9 \gg \ldots \gg(2) 3 \gg(2) 5 \gg(2) 7 \gg \ldots \gg\left(2^{2}\right) 3 \gg\left(2^{2}\right) 5 \gg\left(2^{2}\right) 7 \gg \ldots \\
& \gg\left(2^{3}\right) 3 \gg\left(2^{3}\right) 5 \gg \ldots \ldots \gg\left(2^{n}\right) 3 \gg\left(2^{n}\right) 5 \gg \ldots \ldots \gg 2^{5} \gg 2^{4} \gg 2^{3} \gg 2^{2} \gg 2 \gg 1
\end{aligned}
$$

Charkovsky's Theorem:

If f is a continuous function that transforms an interval I onto itself (i.e., $f(I)$ is contained in I), and if f has a periodic point of period k, then f has a periodic point of period m for every m such that $k \gg m$ in the Charkovsky ordering.
"Period 3 implies Chaos"......

The period 3 orbit first appears at $a=3.828 \ldots$.

$f_{a}(x)$ and $f_{a}^{3}(x)$ for $a=3.78$

and for $a=3.828$

and for $a=3.88$

Final state diagram for $g_{a}(x)=a x^{2} \sin (\pi x)$

Graph of $g_{a}(x)=a x^{2} \sin (\pi x)$ for $a=2.3$

and $g_{a}^{2}(x)$

In fact, this final state diagram is universal for all such ('uni-modal') functions....

But there's more; the rate at which the period doubling bifurcations take place is the same!

Bifurcation point	Period
$a_{1}=3.0$	1
$a_{2}=3.449489$	2
$a_{3}=3.544090$	4
$a_{4}=3.564407$	8
$a_{5}=3.568759$	16
$a_{6}=3.569692$	32
$a_{7}=3.569891$	64

Difference	Ratio
$d_{1}=a_{2}-a_{1}=0.44949$	
$d_{2}=a_{3}-a_{2}=0.94611$	$d_{1} / d_{2}=4.7514$
$d_{3}=a_{4}-a_{3}=0.020316$	$d_{2} / d_{3}=4.6562$
$d_{4}=a_{5}-a_{4}=0.0043521$	$d_{3} / d_{4}=4.6682$
$d_{5}=a_{6}-a_{5}=0.00093219$	$d_{4} / d_{5}=4.6687$
$d_{6}=a_{7}-a_{6}=0.00019964$	$d_{5} / d_{6}=4.6693$

$$
\delta_{k}=d_{k} / d_{k+1}, \quad \delta_{k} \rightarrow \delta=4.66 \ldots
$$

Feigenbaum's constant

The Feigenbaum constant δ specifies the rate at which period doubling bifurcations take place

Universal behaviour

Experimental Measurements of Period-Doublings		
Experiment	Number of period doublings	δ
Hydrodynamic: water helium	4	4.3 ± 0.8
mercury	4	3.5 ± 0.15
Electronic: diode	4	4.4 ± 0.1
transistor	4	4.3 ± 0.1
Josephson	4	4.7 ± 0.3
Laser:	3	4.4 ± 0.3
laser feedback	3	4.3 ± 0.3
Acoustic: helium	3	4.8 ± 0.6

Feigenbaum's constant is universal

A dynamical system depends on a parameter a. Initially, you observe a steady state (i.e., a period 1 orbit). As a increases you observe a period 2 oscillation appearing at $a=a_{1}=7$. Then at $a=a_{2}=10$ you observe that the period 2 orbits splits into a period 4 orbit. As a continues to increase a series of period-doublings occurs. Assuming Universality, at what a value would you expect to observe the onset of chaos?

Qualitative features of the period doubling scenerio for 'uni-modal maps' can be understood by graphical analysis.

But the quantitative features, the universality of the rate of bifurcations (Feigenbaum's constant δ) needs much more work...

This was understood by Feigenbaum in 1975 using methods from Renormalization (physics).

Qualitative features of the period doubling scenario for 'uni-modal maps' can be understood by graphical analysis.

But the quantitative features, the universality of the rate of bifurcations (Feigenbaum's constant δ) needs much more work...

This was understood by Feigenbaum in 1975 using methods from Renormalization (physics).

Renormalization in a nutshell....

In the space of unimodal functions on $[0,1]$, the 'period-doubling' $\operatorname{map} \mathcal{F}$ has a fixed point ϕ. The linearlized map at ϕ has a single eigenvalue greater than one in absolute value, $\delta=4.66 \ldots$, and the rest of the spectrum lies inside the unit circle. It has a one dimensional stable manifold W_{s} and a co-dimension one unstable manifold W_{u}. Σ_{1} is the set of unimodal functions that have a stable (prime) period 2 orbit. $\Sigma_{j}=\mathcal{F}^{-j+1}\left(\Sigma_{1}\right), j=2, \ldots$ are unimodal functions with period 2^{j} orbits. ψ_{μ} is a one-parameter family of maps. Period doubling bifurcations take place at μ_{j}, where $\psi_{\mu_{j}} \in \Sigma_{j}$.

More iteration: Julia sets

More iteration: Julia sets

Complex iteration: $q_{c}(z)=z^{2}+c, \quad z, c \in \mathbf{C}$
'Prisoner set' P_{c}; set of complex numbers whose orbits are bounded; $P_{c}=\left\{z \in \mathbf{C} \mid\left\|q_{c}^{n}(z)\right\|<M \quad \forall n=1,2,3, \ldots\right\}$.
Julia set J_{c} is the boundary of P_{c}.

Julia sets are either completely disconnected ('dust') or are connected (one piece). The values of c for which the Julia set is connected form the Mandelbrot set.....

The Mandelbrot Set

Self-similarity of the Mandelbrot set

Relation of the Mandelbrot set with the final state diagram for the logistic function

References:

Chaos and Fractals, by Peitgen, Jurgens, Saupe

Iterated Maps on the Interval as Dynamical Systems, by Pierre Collet and Jean-Pierre Eckmann. (Technical)

More resources on my webpage; www.sfu.ca~rpyke/fractals

