
Chapter 1

Fractals

I.1 Self-Similarity

Definition 1.1 A set Ω ⊂ Rn is self-similar (or affine self-similar) if there is a proper subset Ω̃ ⊂ Ω, a linear

transformation T , and a vector v ∈ Rn such that T (Ω̃) + v = Ω.

Recall that for any set Ω ⊂ Rn and any linear transformation T : Rn → Rm, T (Ω) = {T (x) |x ∈ Ω},

and for any vector v ∈ Rm, T (Ω) + v = {T (x) + v |x ∈ Ω}; see Figure 1.We call the vector v the shift vector figure

(it shifts the set T (Ω)).

That is, Ω is self-similar if it is made up of smaller, linearly distorted, copies of itself. Note that a

self-similar set is either trivially complicated or infinitely complicated. An example of the former is a square

(eg., it is composed of 4 equal sub-squares). Examples of the latter (’fractals’) will be given in the next

section.

More generally, if J is a set of functions we say that Ω is J self-similar if there is a proper subset Ω̃ ⊂ Ω

and an f ∈ J such that f(Ω̃) = Ω. This more general notion of self-similarity arises for example in the study

of the Mandelbrot set and Julia sets.
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I.2 Some fractals

I.2.1 The Cantor Set

Construction of the Cantor Set

Let C0 = [0, 1], C1 = [0, 1
3 ] ∪ [ 23 , 1], C2 = [0, 1

9 ] ∪ [ 29 , 1
3 ] ∪ [ 23 , 7

9 ] ∪ [ 79 , 1], and in general, let Cn+1 be the union

of the 2n+1 closed intervals, each of length (1
3 )n+1, obtained by removing the open middle thirds of the

2n closed intervals of Cn. We define the Cantor set C to be the intersection of all the Cn; C = ∩∞n=0 Cn.

Another way to describe this is to say that C is the set of points in [0, 1] that remain after removing the

open middle third interval (1
3 , 2

3 ), and then removing the open middle thirds from the remaining two closed

intervals [0, 1
3 ], [ 23 , 1], and then removing the open middle thirds from the remaining four closed intervals,

etc ad infinitum. Note that the sets Cn are approximations of C in the sense that C = limn→∞ Cn, so we

can get an impression of what C looks like by looking at Cn as n gets large (see Figure 2). figure

This construction of C removes infinitely many intervals from [0, 1], so we might wonder if there are any

points in C. Some obvious points are the end points of the open middle third intervals that were removed;

{0, 1, 1
3 , 2

3 , 1
9 , 2

9 , 7
9 , 8

9 , . . . }. So there are at least a countably infinite number of points in C. In fact, we will

see that there are many more points in C than these. But let’s first describe some of the properties of the

Cantor set.

Since [0, 1] = C ∪ {intervals removed} (a disjoint union, notice), the length of C = 1 − (total length of

the intervals removed). The length removed in the first stage is 1
3 , the length removed in the second stage

is 2 · ( 1
3 )2, the length removed in the third stage is 22 · ( 1

3 )3, etc, so the total length of the intervals removed

is
∑∞

n=1 2n−1( 1
3 )n = 1

2

∑∞
n=1(

2
3 )n = 1

2

(
2/3
1/3

)
= 1

2 (2) = 1. Thus, the length of C is 0. This implies that C

cannot contain any intervals, i.e., that is is ‘dust’ (between any two points in C is a point that is not in C).

We’ve noted that the end points of the intervals removed during the construction are in C, but what

other points are in C, if any? It’s very difficult to see what other points are in C by relying on this geometric

construction. For example, can you see why the numbers 1
4 and 3

4 are in C? They are not the end points

of any interval that was removed, yet they are never removed in the construction of C. To see exactly what

numbers are in C, it’s much more convenient to represent numbers in a way that reflects the structure of C.

Going back to the construction, note that the points in C1 are precisely the numbers in [0, 1] that have no

1 in the first place of their ternary expansion (here we need to resolve the ambiguity of [13 ]3 and [ 23 ]3; we

choose [ 13 ]3 = 0.022 and [ 23 ]3 = 0.2, and similarly for the other end points; we choose the representation that

contains only 2
′s). Similarly, C2 are the numbers in [0, 1] that have no 1 in either the first or second places

of their ternary expansion. So we see that Cn is precisely the numbers in [0, 1] that have no 1 in any of the

first n places of their ternary expansion. Thus, since C = limn→∞ Cn, the numbers in C are the numbers in

[0, 1] that have no 1 in their ternary expansion; see Figure 3. figure

For example, [14 ]3 = 0.0202 and [34 ]3 = 0.202 so both 1
4 and 3

4 are in C. Moreover, if a = b1b2b3 . . . is

2



a sequence of 0′s and 2′s, then the number x with [x]3 = 0.a is a number in C. Just how many of these

numbers are there? To answer this we observe that we can match elements in the set B of all sequences of

the form 0.b where b is a sequence of 0′s and 1′s, with numbers in [0, 1] via binary expansions (however, not

in a one-to-one manner). That is, if 0.b is any sequence of 0′s and 1′s, then there is a number x ∈ [0, 1] such

that [x]2 = 0.b, in fact x = b1
2 + b2

22 + b3
23 + · · ·. Now, the set S of all sequences of the form 0.a where a is a

sequence of 0′s or 2′s has the same cardinality as the set B; just match each b ∈ B with an element a ∈ S by

changing every 1 in b to a 2, and visa versa, match each element a ∈ S with an element b ∈ B by changing

every 2 in a to a 1. Since B has the same cardinality as [0, 1], and since S has the same cardinality as C, the

Cantor set C has the same cardinality as the interval [0, 1]! This seems bizarre because in some sense C is a

‘small’ subset of [0, 1] (it is a subset of length 0). This shows you that by ‘rearranging’ the points in [0, 1] we

can obtain a set of length zero (there are also ‘generalized Cantor sets’ which have lengths anywhere between

0 and 1, so more generally we can rearrange the points in [0, 1] to obtain a set of any length between 0 and

1, including 0 and 1; cf. Excercise xx). exercise

How are the numbers in [0, 1] rearranged to obtain C? The discussion in the previous paragraph explained

how we could determine the cardinality of C by matching each number in the interval [0, 1] with a number

in C in a one-to-one manner;

[0, 1] 3 x 7→ b = [x]2 7→ a ∈ S 7→ y =
a1

3
+

a2

32
+ · · · ∈ C (2.1)

(we make the convention that if x has two binary expansions, we take the one that ends in zeros). If you

look more closely at this matching, you’ll see that some numbers in C are actually missed. For example,
1
3 ∈ C is not matched with any number in [0, 1]; [ 13 ]3 = 0.02222, but 1

2 ∈ [0, 1] is mapped to 2
3 ∈ C (see

exercise xxx). So this matching actually only uses a strict subset of C (which is sufficient to prove that the exercise

cardinality of C is at least as large as the cardinality of [0, 1]). However, ‘most’ of the numbers of C are

matched with a number in [0, 1] (exercise xx), so this way to match the two sets gives us a good impression exercise

of how a rearrangement of [0, 1] can produce C.

Generally, we can represent any rearrangement of [0, 1] by drawing the graph of the function ϕ(x) that

represents the rearrangement (i.e., ϕ(x) = y means the rearrangement moves x to y). Now, it’s no mystery

how one can rearrange [0, 1] to obtain a set of small length. Let ε be any small positive number. Then the

function ϕε(x) = εx rearranges [0, 1] into a set of length ε, namely the set [0, ε]. Notice that the slope of the

graph of ϕε(x) is small; the slope of the graph of any function that rearranges [0, 1] into a set of small length

must necessarily be rather small. Since the length of C is zero, the graph of the function ϕ(x) that represents

the rearrangement of [0, 1] into C must in some sense have zero slope. But the graph of this function cannot

be flat on any interval because we know that if x1 6= x2, then ϕ(x1) 6= ϕ(x2). So it’s not obvious what the

graph of this function looks like; it begins at (0, 0), ends at (1, 1), its range is C (so if you projected the

graph onto the y-axis it would be C), and is ‘flat’ !
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To get an idea of what that graph looks like, let’s define a function ϕC(x) which matches the numbers in

[0, 1] to numbers in C as described above in equation (*). Since ‘most’ numbers in C are matched in this way

with a number in [0, 1], the graph of ϕC(x) will give an accurate impression of the way [0, 1] is rearranged to

make C.

Figure 4 shows the graph of ϕC(x). It was obtained by taking x ∈ [0, 1], computing [x]2, changing every figure

1 in [x]2 to a 2, then summing up the resulting ternary expansion to obtain y = ϕC(x). If you look closely

you’ll see that the graph appears to be flat everywhere, but also has lots of jumps. The jumps are precisely

at the points x where x = ( m
2n ) for some positive integer n, and positive integer m < 2n (these are the

numbers which, by the convention mentioned above, have binary expansions that end in zeros). Note that

these points are dense in [0, 1], so the graph of ϕC(x) has a jump almost everywhere, and is ‘flat’ everywhere

else.

Let E = {0, 1, 1
3 , 2

3 , 1
9 , 2

9 , 7
9 , 8

9 , . . . } be the set of edges of the intervals removed in the construction of the

Cantor set C.

Claim: E is a ‘small’ subset of C, i.e., ‘most’ of the numbers in C are not edge points.

Proof: If x ∈ E , then [x]3 ends in 00 because x = m
3n for some positive integer m < 3n (exercise xx).If So is exercise

the subset of S of sequences that end in 00, then S0 is a ‘small’ subset of S in the sense that the cardinality

of S \ S0 is the same as the cardinality of S (exercise xx) 2 exercise

So we could have removed the open closed middle thirds in the construction of C and still have obtained

essentially C. However, the set E shows us where the points of C are.

Claim: E = C.

Proof: Exercise xx. exercise

In other words, the edge points E accumulate to C; if x ∈ C is any point in the Cantor set, then there

is an infinite sequence of points from E that converge to x. So although E is a negligibly small subset of C,

the edge points do show us exactly where the points in C are, and so sketching the edge points gives us an

accurate impression of what C looks like (however, sketching E is no easy task!).

Now we turn to the self-similarity of the Cantor set. We define the interval Aa1a2···an
to be the interval

that contains all numbers in [0, 1] whose ternary expansion begins with a1a2 · · · an;

Aa1a2···an
= {x ∈ [0, 1] | [x]3 = 0.a1a2 · · · anan+1an+2 · · · }

= {x ∈ [0, 1] | [x]3 = 0.a1a2 · · · an ~a }
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where ~a is an arbitrary (infinitely long) sequence of 0
′s, 1

′s, and 2
′s. For example,

A0 = [0, 1/3]

A1 = [1/3, 2/3]

A2 = [2/3, 1]

A00 = [0, 1/9]

A22 = [8/9, 1]

A022 = [8/27, 9/27]

Then we define the sets Ca1a2···an to be those parts of the Cantor set that lie in Aa1a2···an ;

Ca1a2···an
= C ∩Aa1a2···an

= {x ∈ C | [x]3 = 0.a1a2 · · · an ~c }

where ~c is an arbitrary sequence of 0
′s and 2

′s.

Let 3m Ca1a2···an
= {x |x = 3my for some y ∈ Ca1a2···an

}. That is, 3m Ca1a2···an
are the numbers in

Ca1a2···an multiplied by 3m. Now recall that [3mx]3 is the ternary expansion of x shifted to the left by m

places for positive m (see Exercise xx in Appendix 1). Therefore, 3n Ca1a2···an
= {x | [x]3 = a1a2 · · · an .~c }. exercise

Now if we let z = a13n−1 + a23n−2 + · · ·+ an−13 + an (so that [z]3 = a1a2 · · · an), then

3n Ca1a2···an
− z = {x | [x]3 = 0.~c }

where ~c is an arbitrary sequence of 0
′s and 2

′s (this is because if x is a number such that

[x]3 = 0.a1a2 · · · an ~c, then [3nx− z]3 = 0.~c ).

In other words, the set of numbers 3n Ca1a2···an − z are precisely those numbers in [0, 1] whose ternary

expansion contains only 0
′s and 2

′s. That is, 3n Ca1a2···an
− z is the Cantor set. This demonstrates the

self-similarity of the Cantor set (it is similar to pieces of itself after magnifying and shifting the pieces). For

example,

3 C2 − 2 = C

9 C22 − 8 = C

27 C022 − 8 = C

This shows that C is self-similar, and identifies the self-similar pieces of C (here, the linear transformation T

and vector z mentioned in Definition 1.1 are 3n and z respectively).
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Summary of properties of the Cantor set:

• the length of C is zero

• C is totally disconnected (is ‘dust’)

• C is a closed set

• C has the same cardinality as [0, 1]

• every point in C is a limit of a sequence of end points E

• C is self-similar

I.2.2 The Sierpinski Triangle

Construction

Here we construct a fractal in R2. The construction is similar to the construction of the Cantor set; we

successively remove parts of an initial set. Here we start with a solid triangle T0. We divide that triangle

into 4 equal equilateral triangles of 1
2 the size (and so 1

4 the area) of the original solid triangle and remove

the middle triangle; T1. Now we do the same for each of the remaining 3 solid triangles; divide them up

into 4 equal triangles and remove the middle triangle, etc (see Figure 5); T2. The Sierpinski triangle T is the figure

limit of these sets; T = limn→∞ Tn. Or, since Tn+1 ⊂ Tn, it is the intersection of all these sets; T = ∩∞0 Tn.

Now let’s see what’s left after carrying out this procedure ad infinitum. First of all one can show that

the total area removed is equal to the area Ao of the initial triangle. But just as with the Cantor set, this

doesn’t mean there isn’t anything left at the end. Since we removed open triangles, all the edges (lines) of

the triangles removed are left. These edges form a curve that is infinitely long (exercise xx). exercise

To quantify the self-similarity of the Sierpinski triangle T , let Aa1a2...an
denote the region of To with

address a1a2 . . . an and Ta1a2...an
denote the part of T inside Aa1a2...an

(see Figure 14). Then we see that figure

2n I Ta1a2...an + v = T , for appropriate shift vector v, and where I =

 1 0

0 1

.

I.2.3 More Fractals

The von Koch curve

Unlike the Cantor set and Sierpinski’s triangle, the von Koch curve is not constructed by successively

removing pieces from an initial set, but by adding to (and modifying) an initial curve. We begin with a

line segment of length 1 (say); K0 = [0, 1]. Then we remove the open middle third segment ( 1
3 , 2

3 ) and add

two line segments of length 1
3 forming an equilateral triangle. This leaves us with 4 lines segments K1 of

length 1
3 ; Figure 6. We continue with this procedure; for each line segment we remove the open middle third figure
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segment and form an equilateral triangle. The von Koch curve K is the limiting curve; K = limn→∞ Kn
1.

The length of an intermediate curve Kn is 4n( 1
3 )n, and so the length of K is limn→∞ 4n( 1

3 )n = ∞; the

von Koch curve is infinitely long. The whole curve resides in a region of finite area, so to fit it in it would

have to be very complicated! To get an idea of how complicated the curve really is, note that in constructing

the von Koch curve, we successively removed the open middle third intervals of the line segment K0. This

is exactly what we did to construct the Cantor set, so K ∩K0 = C. Furthermore, at each end point of the

intervals removed there is a corner. We saw above (§1.2.1) that the end points E are dense in C. Since each

‘side’ of the von Koch curve is self-similar to K ∩K0, there is a corner almost everywhere along K. One can

show that K is a continuous curve (Exercise xx), but since there is a corner almost everywhere along the exercise

curve, K is non-differentiable everywhere.

Instead of adding a triangle to the intervals removed, we could add a square. This results in a ‘square’

von Koch curve; see Figure 7. figure

1The sense in which the curves Kn converge to K can be made precise using the Hausdorff metric h described below;

limn→∞ h(Kn+1, Kn) < ( 1
3
)n, so {Kn} is a Cauchy sequence in (X2, h), the metric space of images in R2, and so has a limit,

which we call K.
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